
PushBox: Making Use of Every Bit of Time to
Accelerate Completion of Data-Parallel Jobs

Chen Tian , Yi Wang, Bingchuan Tian , Yang Zhao, Yuhang Zhou, Chenxu Wang,

Haoran Guan, Wanchun Dou , and Guihai Chen

Abstract—To minimize a job’s completion time, we need to minimize the completion time of its final stage’s last task. Scheduling of

machine slots and networks largely dominates the variable part of each task’s duration. Finding an optimal schedule is NP-hard even

for offline and simplified scenarios. Previous work does lead to improved performance with various strategies. State-of-the-art task

placement and network scheduling efforts are largely disjunctive. Without joint optimization, they are sub-optimal and myopic in many

scenarios. Task placement usually treats the network as a black box. Thus, we use prioritized bandwidth allocation among tasks

making the network both predictable and efficient to achieve joint scheduling. With this feature, joint scheduling can be transformed into

a special bin-packing problem. Over this minimal yet power-enough abstraction, we propose PushBox to schedule data-parallel jobs in

multi-tenant clusters. When designing the joint scheduling algorithm, we not only embrace the wisdom of prior art but also respect

administrators’ fairness intent, which is so far largely ignored. We implement PushBox on Hadoop 3. PushBox performs persistently

well on both a small testbed and a trace-driven simulator.

Index Terms—Task scheduling, distributed system, datacenter

Ç

1 INTRODUCTION

TO provide a small response time for interactive data-ana-
lytic queries [1], cluster operators rely on in-memory

data-parallel frameworks (e.g., in-memory MapReduce [2],
[3], Spark [4]). As shown in Fig. 1a, a data-parallel job in
such a framework can be defined as a directed graph of
processing stages. An edge defines the dependency between
a preceding stage and the following stage. Each stage is
comprised of many independent execution tasks. Cluster
machines divide their computation capacity into several
slots (e.g., one CPU core, one Docker container, etc.) to exe-
cute these tasks. A task execution example is demonstrated
in Fig. 1b, where stage A/B/C/D has 3/2/2/2 tasks respec-
tively. A solid line represents an individual task running in

a slot, and an arrow represents data dependency between
two tasks. A stage’s completion is marked by its last task’s
completion. To minimize a job’s completion time, we need
to minimize the completion time of its final stage’s last task.

To facilitate analysis, we present a conceptual model of
a task’s lifetime in Fig. 1c. There are 4 phases. All tasks of
a job (virtually) start their admitting phases at the job sub-
mission time together, even if most of them may not
instantiate yet. A task becomes a candidate of slot alloca-
tion when its belonging stage starts. Then it transits to the
waiting phase, where it waits for being scheduled to an
available machine slot. After that, this task runs. In the
input phase, a task reads input data from either network
or local storage. In most cases, the duration of this phase
is dominated by network scheduling. The computing
phase is CPU-intensive, thus can be considered as a rela-
tively constant duration for a given computation work-
load running on a specific slot.

Which one is the last completed task of each stage is not pre-
determined. Allocating an available slot to one candidate task
leads to increased waiting phases for all other candidates.
Whenever a running task’s input traffic is prioritized, input
phases could be prolonged for all other tasks sharing the same
network bottleneck. To sum up, scheduling of slots and net-
works largely dominates the variable part of each task’s dura-
tion and, in turn, each stage’s duration. Eventually, delays of
every stage accumulate to a job’s completion time.

Computing clusters are usually multi-tenant for utiliza-
tion and cost-effective [5], [6]. An administrator’s policy
enforces slot fairness among users and/or jobs, hence which
user/job is legitimate for the next slot is largely determin-
istic (e.g., First In First Out (FIFO) and Fair in Section 2.1).
The design space includes: which task to occupy which slot
(i.e., task placement), and how to share the network among

� Chen Tian, Bingchuan Tian, Yang Zhao, Yuhang Zhou, Chenxu Wang,
Wanchun Dou, and Guihai Chen are with the State Key Laboratory for
Novel Software Technology, Nanjing University, Nanjing 210093, China.
E-mail: {tianchen, douwc, gchen}@nju.edu.cn, bctian@smail.nju.edu.cn,
{274131484, 1223870886, 806496096}@qq.com.

� Yi Wang is with the School of Modern Posts, Nanjing University of Posts
and Telecommunications, Nanjing 210049, China.
E-mail: 151485321@qq.com.

� Haoran Guan is with the School of Computer Science, University of Sydeny,
Sydney, NSW2006, Australia. E-mail: hgua5212@uni.sydney.edu.au.

Manuscript received 18 November 2021; revised 28 April 2022; accepted 7 June
2022. Date of publication 17 June 2022; date of current version 23 August 2022.
This work was supported in part by the Key-Area Research and Development Pro-
gram of Guangdong Province under Grant 2020B0101390001, in part by the
National Natural Science Foundation of China under Grants 92067206, 62072228
and 61972222, in part by the Fundamental Research Funds for the
Central Universities, and in part by the Collaborative Innovation Center of Novel
Software Technology and Industrialization, and the Jiangsu Innovation and Entre-
preneurship (Shuangchuang) Program.
(Corresponding author: Yi Wang.)
Recommended for acceptance by S. Chandrasekaran.
Digital Object Identifier no. 10.1109/TPDS.2022.3182037

4256 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

1045-9219 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Nanjing University. Downloaded on April 16,2025 at 08:28:00 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-2710-7628
https://orcid.org/0000-0003-2710-7628
https://orcid.org/0000-0003-2710-7628
https://orcid.org/0000-0003-2710-7628
https://orcid.org/0000-0003-2710-7628
https://orcid.org/0000-0003-2855-5772
https://orcid.org/0000-0003-2855-5772
https://orcid.org/0000-0003-2855-5772
https://orcid.org/0000-0003-2855-5772
https://orcid.org/0000-0003-2855-5772
https://orcid.org/0000-0003-4833-2023
https://orcid.org/0000-0003-4833-2023
https://orcid.org/0000-0003-4833-2023
https://orcid.org/0000-0003-4833-2023
https://orcid.org/0000-0003-4833-2023
https://orcid.org/0000-0002-6934-1685
https://orcid.org/0000-0002-6934-1685
https://orcid.org/0000-0002-6934-1685
https://orcid.org/0000-0002-6934-1685
https://orcid.org/0000-0002-6934-1685
mailto:tianchen@nju.edu.cn
mailto:douwc@nju.edu.cn
mailto:gchen@nju.edu.cn
mailto:bctian@smail.nju.edu.cn
mailto:274131484@qq.com
mailto:1223870886@qq.com
mailto:806496096@qq.com
mailto:151485321@qq.com
mailto:hgua5212@uni.sydney.edu.au

running tasks (i.e., network scheduling). These variables
entangle when multiple jobs are executed in clusters and
compete for slots.

Previous work does lead to improved performance with
various strategies. Locality-improve strategy directly reduces
network resource demand, where task placement considers
data locality [7], [8], [9], [10], [11]. Progress-require strategy
avoids slot resource waste, where task placement actively
transfers slots from a legitimate job to other jobs when the
legitimate job’s tasks can not make progress if run on these
slots [10], [12]. Coflow-optimize strategy shortens tasks’
admitting phase, where network scheduling uses an
abstraction of application semantics to shrink the time con-
sumption of following stages’ tasks in admitting phases
[13], [14], [15], [16], [17] (Section 2.2). These task placement
and network scheduling efforts are largely disjunctive. Task
placement usually treats the network as a black box. Net-
work scheduling targets network metrics. Without joint
optimization, they can be sub-optimal and myopic in many
scenarios (Section 2.3).

The key is to turn the black box into a white box to fully
consider the performance impact of network scheduling in
task placement for joint optimization. Our critical insight is
that prioritized bandwidth allocation among tasks makes
the network predictable and efficient [18], [19], [20], [21]. With
this feature, joint scheduling can be transformed into a spe-
cial two-dimensional bin-packing problem, where the first
dimension is per-slot time, and the second dimension is dif-
ferent slots. However, this ideal abstraction may fail in
some scenarios, where a single input phase task cannot
exclusively utilize a machine’s NIC even with network pri-
ority (Section 3).

We propose predictable and efficient network abstraction
(Pe~na) as a compromise between ideal requirements and
practical constraints. Pe~na approximates the ideal abstrac-
tion via controlled but still prioritized concurrency of input
phase tasks’ transmissions (Section 4).

Over this minimal yet power-enough abstraction, we pro-
pose PushBox to schedule data-parallel jobs in multi-tenant
clusters. For a directed task execution graph, PushBox itera-
tively optimizes the current critical path. There are two chal-
lenges. First of all, the two-dimensional scheduler should
guarantee a considerable performance improvement com-
pared to only one-dimensional scheduling. Second andmost
importantly, the scheduler should respect administrators’
fairness intent, which is largely ignored by previous work.
To address all these challenges, we have designed our algo-
rithms accordingly (Section 5).

We implement PushBox on Hadoop-3.1.1 (Section 6).
PushBox is evaluated using both a 10-machine testbed and a
trace-driven simulator. PushBox reduces the average/tail
job completion time by 56.6%/51.9% comparedwith alterna-
tive approaches. We also evaluate PushBox under different
scenarios. Results show that PushBox performs persistently
well in almost all cases (Section 7). Discussions and future
work are followed (Section 8).

2 BACKGROUND AND MOTIVATION

In Section 2.1 we present the modeling of data-parallel jobs
and targeted multi-tenant clusters. Related work is pre-
sented in Section 2.2. A bunch of toy examples demonstrates
the opportunities for possible improvement (Section 2.3). To
help presentation, we use Hadoop as the illustrative data-
parallel framework due to its simple stage graph. A Hadoop
job consists of a map stage of mappers, a reduce stage of
reducers, and the communication among mappers and
reducers (i.e., shuffle). The job completion time is equal to
its reduce stage’s completion time.

2.1 System Model

Data-Parallel Jobs. Shown in Fig. 1 is a general model of
data-parallel jobs. For in-memory computing systems,
SSD are widely used thus the bottleneck of disk IO can
be neglected. Machine slots and networks are the main
resource bottlenecks.

Network transmission in the sender-end usually does not
consume slots. Output data are stored in memory (or fast
SSD) and tasks terminate. Transmission in the receiver-end
does consume slots (i.e., the input phase in Fig. 1). Readers
may wonder how general the modeling of task lifetime in
Fig. 1c is. For many tasks, although trivial pre-processing
may exist within the input phase, main computing functions
start only when all input data are collected (e.g., terasort
reducers). Note that some tasks can begin main computing
functions with partial data (e.g., wordcount reducers). If such
a task’s per-data-unit computing speed is faster than its data
input rate, it is conceptually equivalent to having a 0-length
computing phase. Otherwise, the task still has a computing
phase. There are two types of dependencies among succes-
sive stages (proposed by Chowdhury et al. [15]).

� Starts-After: there exists an explicit barrier, where the
following stage cannot start until its preceding stage
has finished. For example, in synchronous machine
learning, a new stage usually starts after the current
stage finishes.

� Finishes-Before: the following stage can coexist with
its preceding stage but it cannot finish first. Some
dependencies with data transfer fall into this cate-
gory. For example, the slowstart option in Hadoop
enables a reduce stage to start when the ratio of com-
pleted mappers in the preceding map stage reaches
a given threshold value.

We believe this modeling can be generalized to other
stage-based pipeline types such as Spark’s iterative optimi-
zations common in machine learning.

Cluster Architecture. To make our analysis tractable, we
assume homogeneous machines with equal resources. All

Fig. 1. Modeling a data-parallel job.

TIAN ETAL.: PUSHBOX: MAKING USE OF EVERY BITOF TIME TO ACCELERATE COMPLETION OF DATA-PARALLEL JOBS 4257

Authorized licensed use limited to: Nanjing University. Downloaded on April 16,2025 at 08:28:00 UTC from IEEE Xplore. Restrictions apply.

slots have equal resources, and a slot can support any task.
Our examples use non-blocking networks. Non-blocking
networks are characterized by the property that in the pres-
ence of a currently established connection between any pair
of input/output, it will always be possible to establish a con-
nection between any arbitrary unused pair of input/output.
This model is attractive for its simplicity, and recent advan-
ces in data center network fabrics [22], [23] make these net-
works practical. Note that our approach does not assume or
rely on non-blocking topology. Evaluations demonstrate
that PushBox provides similar performance improvements
in oversubscribed fabrics (Section 7). We defer discussion of
readers’ concerns to Section 8.

A scheduler continuously assigns available slots to wait-
ing tasks from different jobs and recycles slots from com-
pleted tasks. Administrators specify fairness criteria for slot
allocation. For example, Fair Scheduler enforces weighted-
share among multiple users’ job queues [24]. Each user
queue can also specify either FIFO or Fair rules. In the FIFO
mode, the scheduler can only allocate a slot to a following
job’s task if the currently running job is not disturbed. In the
Fair mode, the available slots are weighted-shared among
multiple concurrent jobs. The scheduler can set the Differen-
tiated Services Code Point (DSCP) bit for each task’s input
flows to enforce network priorities. Network scheduling
needs this capability to favor some flows over others (details
in Section 2.2).

Scheduling Objectives and Outputs. Each task’s input size
can be directly get or roughly predicted [25], [26]. With the
information of input size, a task’s computing phase dura-
tion can be estimated from historical execution logs or by
worst-case execution-time (WCET) code analysis [27]. Let
each task’s running time cost includes its durations of input
and computing phases, Fig. 1b demonstrates a directed
graph of task execution. An auxiliary Exit node is added
and every task in the final stage points to it. A scheduler
needs to minimize the time to finish all tasks in the graph.

Schedulers are activated in two modes. In the slot-change
mode, there exist a number of candidate tasks in waiting
phases. If a slot has just been released, it suggests new com-
pute resources. If a slot’s running task transits from input to
computing phase, it suggests new network resources. As
the fairness policy is already given, which job is legitimate
for the next slot is deterministic. Scheduling decides which
task of the legitimate job should be selected, and how net-
work bandwidth is allocated to it. In the task-arrival mode,
there exist a number of free slots. Then a batch of tasks just
enters the waiting phases. Scheduling task placement in
task-arrival mode is different since it has an additional step
of deciding which slot should be placed on.

2.2 Related Work

There exists theoretical work in joint scheduling of network
and computation [28], [29]. However, these works make
impractical assumptions. For example, they require that all
tasks’ allocations are pre-determined at the start of the
whole system. In reality, jobs arrive online and their tasks
should be adaptively allocated to available slots.

Previous practical work has two separate working
points: task placement and network scheduling. As a first
step, we distill the underlying insights from them.

Task Placement. Locality-improve strategy reduces network
resource demand. Being topology-aware, locality-oriented
task placement directly reduces the burden for networks.
On one hand, a localized task helps accelerate other running
network-intensive tasks by reducing contention. On the
other hand, it also has a chance to shrink the duration of its
own input phase at the cost of a longer waiting phase [7].
Delay-scheduling and Quincy optimize data locality when
placing mappers [7], [8]. Mantri instead optimizes data
locality when placing reducers [9]. ShuffleWatcher performs
shuffle-aware mapper and reducer placement in a multi-
tenant cluster [10]. Corral performs joint input data and
task placement to achieve better data locality based on
workload prediction [11].

Progress-require strategy avoids slot resource waste. Some
workplace tasks consider contemporary network load. If a
task is already or would be, blocked in the input phase due
to network contention, it may be better to donate this slot to
another job of the same user, or even another user’s jobs, so
that other jobs could get the benefit. This is the intuition
behind DynMR [12] and ShuffleWatcher [10]. DynMRmoni-
tors the progress of a reducer and backfills it with a mapper
if data fetching is too slow [12]. ShuffleWatcher places a
mapper instead of a reducer if the machine NIC utilization
exceeds 75-100% [10].

Network Scheduling. Coflow-optimize strategy shortens tasks’
admitting phases. The coflow abstraction considers application
semantics. The all-or-nothing semantics means that all input
flows to a stagemust finish together. Previous network sched-
ulers tries to minimize this make-span of data transfer
between successive stages. Shorter admitting phases could be
achieved for tasks belonging to the following stages. Some
work try tominimize the average coflow completion time (CCT).
Orchestra shows that even a simple FIFOdiscipline can signif-
icantly reduce the average CCT [30]. Barratmultiplexesmulti-
ple jobs’ transfer to prevent head-of-line blocking [13]. Varys
uses heuristics such as smallest-bottleneck-first and smallest-
total-size-first [14]. Aalo is a non-clairvoyant scheduler that
reduces CCT by following the Least-Attained-Service rule in
a distributed manner [15]. Sincronia demonstrates that given
a “right” ordering of coflows, average CCT within 4x of the
optimal can be achieved [16]. Giroire et al. [31] divide the
problem of scheduling network tasks into two subproblems:
choosing the placement policy that minimizes the network
and computational overhead and scheduling the tasks under
the above placement policy. This scheduling algorithm is
optimal on simpleMapReduceworkflows.

Summary. State-of-the-art task placement and network
scheduling efforts do lead to improved performance.
While they are largely disjunctive. Task placement work
usually treats the network as a black box. They thus focus
on reducing resource demand or waste. Network schedul-
ing work targets network metrics such as CCT. As far as
we know, NEAT is the only task placement approach
with explicit network prediction [32]. Given accurate net-
work status and a network scheduling policy (i.e., First-
Come-First-Serve, Least-Attained-Service and Fair), a cen-
tralized scheduler uses the predicted transmission com-
pletion time to place tasks that can accomplish their
flows/coflows at the earliest time. NEAT only handles
the task-arrival mode, where slots are always sufficient for

4258 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

Authorized licensed use limited to: Nanjing University. Downloaded on April 16,2025 at 08:28:00 UTC from IEEE Xplore. Restrictions apply.

placing every task. It targets network metrics such as flow
completion time (FCT) or CCT. NEAT takes any existing
network scheduling policy for granted as an algorithm
input. It does not consider joint optimization of comput-
ing and network.

2.3 Our Observations

Via several toy examples, we present our observations that
are common in practice where existing approaches are sub-
optimal and myopic. All examples are in slot-change mode.

Case 1: Task Placement Can Exploit Intra-Stage Task Heteroge-
neity. Current work largely ignore the native heterogeneity
among tasks even in the same stage. Complex analytics in
data-parallel framework’s programming practice increases
the demand for user-defined operations (UDOs). Without
sophisticated custom partitioning functions or heavy-weight
load-balance mechanisms, data skewness is inevitable [33],
[34]. In the same stage, one task may have much more input
data than another task. With the same computing function,
its computing phase could be alsomuch longer.

Consider a single Hadoop job example in Fig. 2a. There is
a single job queue with one job A. Job A’s map stage has
already finished at time 0. There are two reducers R1=R2.
R1 has 1 unit of shuffle data to be collected and 1 unit of
computation time. R2’s data and computation both triple
that of R1. A machine with two slots S1=S2 can receive at
most 1 unit of data in each time unit. S1 is available at time
0 and S2 is free later at time 2. In this figure, we use tex-
tured/stuffed rectangles to denote task input/computing
phases.

At time 0, current task schedulers may randomly select
R1 for S1. Then at time 2, R2 can be scheduled to either S1
or S2. Job A’s completion time is 8. This is far from optimal.
Suppose R2 is scheduled to S1 at time 0 in Fig. 2b. Then R1

is scheduled to S2 at time 2. Between time 2 and 4, they
equally share the bandwidth. Job A’s completion time can
be reduced to 7.

Case 2: Network Scheduling can Further Exploit Intra-Stage
Task Heterogeneity. Same with those task placement app-
roaches, existing network schedulers also never consider the
length of each task’s computing phase. In this example, R2’s
computing phase is much longer. An improvement is to par-
allelize network and computation as much as possible. As

shown in Fig. 2c, if R2’s flows can be prioritized over R1’s
flows, R2’s and job A’s completion time can be further
reduced to 6.

Case 3: Task Placement may be Myopic to Waste Slots. Now
let’s extend the above example to a single-queue multi-job
scenario. We assume the slot policy is FIFO. There is an
additional job B, which only has a single mapper task M1

with 1 unit of computation time. Its submission time is 2+d,
where d is a negligibly small value.

Most schedulers (e.g., ShuffleWatcher) always place a
task if there exist available slots. Hence R1 would occupy
S2 at time 2 regardless of network scheduling. Following
the network scheduling in Fig. 2c, R1 would actually block
without progress for 1 time slot. At time 2+d, job B is com-
mitted but all slots are occupied. M1 has to wait until S2 is
released at time 5. Job B’s completion time is 6-(2+d) = 4.

The key observation is that, if we have already known a
priori revelation that a task would be blocked by the net-
work, we can choose to not place it at all and keep the slot
empty. Then S2 is not allocated at time 2. As mentioned
above, the FIFO scheduler can allocate a slot to a following
job’s task if the currently running job is not disturbed. As
shown in Fig. 2d, then M1 can be allocated at time 2+d. Job
B’s completion time is only 1 unit.

Case 4: Network Scheduling may Waste Slots Unnecessarily.
Note that network scheduling alone could waste slots
regardless of data skewness and task placement. We modify
the example to evenly split the input data between R1 and
R2 assuming a perfect data balance [33]. Now they both
have 2 units of shuffle data and 2 units of computation time.
We also assume both slots are available at time 0.

A widely-accepted mantra is to finish all flows simulta-
neously within a coflow [14], [15], [16], [30]. The example in
Fig. 2e follows the rule. In this case, both tasks finish at time
6 and M1 can be allocated. As a comparison, if we let R1’s
flows have priority, then R1 can be finished at time 4 with-
out impacting the coflow finish time (Fig. 2f). Then M1 can
be scheduled at time 4 and job B’s completion time is 2 units
earlier. Similar results have been reported recently [35].

Summary. It is clear that joint optimization of compute
and network can accelerate job completion. While as men-
tioned above, optimal joint scheduling of compute and net-
work is NP-hard.

3 OVERVIEW

Intuition. Our key insight is that prioritized bandwidth allo-
cation among tasks makes the network both predictable and
efficient. With this feature, joint scheduling of compute and
network can be transformed into a special two-dimensional
bin-packing problem, where the first dimension is per-slot
time, and the second dimension is different slots.

Let’s revisit the hidden network assumptions of toy
examples: 1) tasks can be prioritized, and 2) the highest pri-
ority task can exclusively use full NIC bandwidth. Thus, the
duration for each task’s input phase can be accurately esti-
mated. The scheduler can choose to place larger task R2 first
and harvest the parallelism between R2’s computing and
R1’s input phases (i.e., Case 2 in Section 2.3). It can also
choose to be far-seeing instead of myopic by keeping the
slot free for the moment (i.e., Case 3 in Section 2.3). For

Fig. 2. Performance improvement opportunities.

TIAN ETAL.: PUSHBOX: MAKING USE OF EVERY BITOF TIME TO ACCELERATE COMPLETION OF DATA-PARALLEL JOBS 4259

Authorized licensed use limited to: Nanjing University. Downloaded on April 16,2025 at 08:28:00 UTC from IEEE Xplore. Restrictions apply.

already-placed tasks, prioritized network scheduling can
save slots for other jobs without compromising a target job’s
progress (i.e., Case 4 in Section 2.3).

Now a scheduler is relieved from fine-grained band-
width allocation. Intuitively, a task can be represented by a
box with two fixed-length segments (i.e., network and com-
pute). The scheduler then packs tasks in a job’s graph one-
by-one to slot-time two-dimensional bins.

Challenge. The second assumption of examples is not prac-
tical in many scenarios: there is no guarantee that a single
input phase task can exclusively utilize a machine’s NIC
even with network priority. An input phase task may
retrieve data from all machines of preceding stages. It ini-
tiates multiple connections simultaneously to exploit avail-
able bandwidth. Usually, the receiver-end is the network
bottleneck. While in some cases congestion could exist in
sender-end. For example, a non-local Hadoopmapper needs
to read input data from 1 HDFS copy in another machine.
What’s more, modern datacenter networks usually have
bandwidth fan-in (a term that defines the maximum number
of digital inputs that a single logic gate can accept) between
leaf and spine switches [23]. Input flows could be congested
at the network core than at the receiver-end.

Scheduling based on the ideal abstraction could be nei-
ther predictable nor efficient. For Case 3 in Section 2.3, if R2

cannot fully utilize the bandwidth as predicted, it is a waste
of network resources to delay placing R1.

4 A PRACTICAL ABSTRACTION

Predictable and efficient network abstraction (Pe~na) is a com-
promise between ideal requirements and practical con-
straints. In Spanish, Pe~nameans “rocky summit”. PushBox is
the first attempt to define a dedicated network abstraction to
jointly schedule compute and network for data-parallel jobs.

Observation. Running multiple connections concurrently
can help improve utilization. We simulate bandwidth utili-
zation with a number of machines in a 10 Gbps non-blocking
datacenter network. In each machine, there are m input
phase tasks with random settings of network priority bits.
Each task establishes 5 random connections to pull data from
remote machines, which is the default setting in Hadoop. As
shown in Fig. 3a, only 3 tasks can already use about 95%
bandwidth. The additional throughput gain brought by one
more task per machine decreases exponentially. We can
expect that in an oversubscribed network, the utilization of
bottlenecked core switches could be even higher. It is safe to
consider a network reaches a congested status, once the
number of input phase tasks reaches a threshold.

Controlled Concurrency. Our solution is controlled but still
prioritized concurrency of input phase tasks’ transmissions.

We use a small number m to control the number of input
phase tasks. The choice of m is a trade-off between slot and
network resources. A too-small m may lead to low network
utilization, while a too-large m may waste slots. The value
of m is related to network topology and NIC link speed.
Usually, a sweep of several values can get a reasonable
value range of it. We use m ¼ 3 for our non-blocking
10 Gbps testbed, and leave the analysis of optimal m to
future work.

Note thatm is a recommended lower bound to the sched-
uler. A scheduler can decide to temporarily increase the
number of input phase tasks more than m when it is benefi-
cial or necessary (Section 5.2). In each machine, network pri-
ority is supported among input phase tasks by assigning
different DSCP bits independently.

Being Efficient. Controlled concurrency guarantees net-
work utilization. Prioritized concurrency guarantees that
task transmissions are approximately ordered if they com-
pete for the same network bottleneck. Let header task refers
to the input phase task with the highest priority in a
machine, and let tail tasks refer to others. With the highest
priority in the whole network, a header task is unlikely to
be bottlenecked by any tail task. Its competition comes from
other header tasks in other machines. With higher band-
width, high-priority tasks finish faster to release their slots.
Although not optimal, it is already much more efficient (in
terms of slot resource) than the original flow-level fair shar-
ing or coflow-level scheduling.

A measure experiment is shown in Fig. 3b, where three
Hadoop reducers share the same machine. They have the
same input sizes and the network priorities are
R1 > R2 > R3. There exist other 8 machines with running
reducers. Compared with the ideal abstraction, network
bandwidth is still almost fully utilized but not perfectly
exclusive due to mapper end competition. The completion
times of reducers are ordered.

Being Predictable. Given the nature of controlled concur-
rency, the prediction of congestion status is accurate. The
problem is how to estimate the input phase duration of a
task. As shown in Fig. 3b, it is hard for a tail task (e.g., R2Þ
whose duration is dominated by all running tasks with
higher priorities.

We take a step back and only use the measured total
receiving rate of the machine NIC in our scheduling. The
receiving rate can be estimated as received bytes divided by
elapsed time. The obtained “effective” machine bandwidth
is smoothed using an exponential moving average algo-
rithm. As demonstrated in Fig. 3b, this rate is relatively sta-
ble compared with the per-task rate. Thus, the remaining
duration of all running tasks’ transmissions, together with a
candidate task’s duration in this machine, can be roughly
predicted as the number of remaining bytes in this task
divided by the estimated receiving rate. With this time, we
can better predict the duration of the input phase of the task
for slot selection (Section 5.1).

Note that for large oversubscribed networks, the intra-
rack transfer is not accounted in this calculation. In this sce-
nario, the rack-level data source is also considered as local.
Intra-rack transmissions are given a reserved lowest net-
work priority to exploit all remaining bandwidth. An exam-
ple is a mapper with rack-locality.

Fig. 3. Approximate the ideal network abstraction.

4260 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

Authorized licensed use limited to: Nanjing University. Downloaded on April 16,2025 at 08:28:00 UTC from IEEE Xplore. Restrictions apply.

5 PUSHBOX SCHEDULER

Over the minimal yet power-enough abstraction Pe~na, we
propose PushBox to schedule data-parallel jobs in multi-
tenant clusters. PushBox scheduling focuses on the place-
ment ordering of tasks. A well-designed heuristic algorithm
should obtain near-optimal job completion time.

Critical-Path Oriented Scheduling. PushBox gets insights
from the Dynamic Critical Path (DCP) algorithm [36], where
the critical path is defined as the current longest path from a
candidate task to the exit node (Fig. 1b). PushBox iteratively
optimizes the critical path during the scheduling process.
The intuition is that the critical path defines the lower
bound of job completion time.

The stage-based pipeline model of data-parallel jobs
presents a unique opportunity to find the critical path.
From a stage-centric view, there is always a running stage
in the critical path as a whole. Scheduling problem is trans-
formed to select the critical task from current critical stage
and assign network priority to the task.

Challenges. To minimize job completion time, the sched-
uler needs to consider multiple factors besides critical path
of the legitimate job. We use the word legitimate to empha-
size that the scheduler may transfer slots from a legitimate
job to other jobs, either due to locality-improving or prog-
ress-require strategies. This job/task is called the beneficiary
job/task.

First, the two-dimensional scheduler should guarantee a
considerable performance improvement compared to only
one-dimensional scheduling. To achieve near-optimal per-
formance, we embraced the existing wisdom of related
work, including task placement and network scheduling.
For example, locality-improve is a trade-off between longer
waiting phases and possibly shorter input phases for the
current legitimate job tasks. Without care, it may hurt job
completion time. We incorporated these strategies when
designing building blocks (Section 5.1) and achieved better
performance than the original through a careful design.

Second, the scheduler needs to respect administrators’ fair-
ness intent. Administrators do have an implicit ”assumption”
about the underlying network in actual scheduling. They
expect that bandwidth is equally shared among running
tasks [37]. If the number of running tasks follows Fair or FIFO
policies, the network may also approximate these policies.
However, this “assumption” could be compromised by vari-
ous optimization strategies. So far this important issue is
largely ignored by related work. We add several adaptions to
our algorithms (Section 5.2).

Putting them together, we present the pseudo-codes of
scheduling in two modes (Section 5.3).

5.1 Building Blocks

For each invocation of the scheduler, it first gets an ordered
job list according to a given multi-queue scheduling policy.
For both slot-change and task-arrival modes, scheduling
starts with task selection from a legitimate job. Task-arrival
mode has an additional step of slot selection. The next step is
controlled concurrency to judge whether the chosen task can
be placed. If the task passes the test, the task is actually
placed with a network priority setting. Fail any step, the slot
should be transferred to the next job in the list.

Algorithm 1. Building blocks

1 function selectTaskðtasks; machineÞ
2 if tasks have oppotunities of locality then
3 selectedTask select one task according to existing

locality polices;
4 return selectedTask;
5 else
6 sort tasks in descending order by input size;
7 return the first task;
8 end
9 function canBePlacedðtask; machineÞ
10 if machine.#inputPhaseTask < threshold then
11 return true;
12 else
13 if task.job.#coflow < machine.minCoflow then
14 if policy = Fair then
15 return true;
16 else
17 return false;
18 else
19 return false;
20 end
21 function notHinderTaskðtask; machineÞ
22 if task.compuingTime < machine.dataTransferTime then
23 return true;
24 return false;
25 end

Task Selection. Consistent with locality-improving strat-
egy, task selection first branches if the current stage has an
opportunity of locality (line 2 of Algorithm 1). In PushBox,
we use existing locality policies but only for a limited range
of tasks (lines 3-4 of Algorithm 1). For example, the first
stage of a job usually reads input data from distributed file
systems (e.g., mapper tasks in Hadoop). For each task, the
number of possible data source machines is limited (e.g.,
usually 3 in HDFS). Localizing such a task can eliminate all
network traffic (machine-local) or, all cross-rack traffic
(rack-local). PushBox does not consider a task with a large-
number of data sources (e.g., reducer tasks in Hadoop). In a
cluster with hundreds of racks of machines, the benefit of
localizing such a task is questionable while it prolongs the
waiting phase of this critical task.

To handle the trade-off between the waiting phase and
input phase, PushBox is compatible with the Delay-schedul-
ing approach. Delay-scheduling adds a mechanism to limit
the maximum number of slot transfers [7]. It gives a slot to a
legitimate job after a certain number of skips. Thus the
returnTask could be a local task without input phase, or a
task with remote input data, or null (i.e., there is no local
opportunity while the skip count is not reached yet).

For the other branch, we need to find the critical path.
The exact estimation of task durations is actually not
required in this part. The observation is that all tasks in a
stage share the same computing function [2]. The larger the
input data, the longer the computing phase. As a result,
PushBox sorts all waiting tasks in the critical stage in
descending order of their input sizes and selects the largest
task as the candidate (lines 5-7 of Algorithm 1).

Slot Selection. Machines with free slots are sorted accord-
ing to their remaining total network duration, i.e., remaining

TIAN ETAL.: PUSHBOX: MAKING USE OF EVERY BITOF TIME TO ACCELERATE COMPLETION OF DATA-PARALLEL JOBS 4261

Authorized licensed use limited to: Nanjing University. Downloaded on April 16,2025 at 08:28:00 UTC from IEEE Xplore. Restrictions apply.

bytes divided by estimated machine receiving rate. In the
bin-packing context, it is equivalent to pack the chosen task
as early as possible. The corresponding codes are shown in
Algorithm 3.

Controlled Concurrency. For a given slot, the scheduler
judges whether a given machine’s network is already con-
gested (lines 9-10 of Algorithm 1). Otherwise, a new task
with input data requirements can be placed.

Flow Priority.When a new input phase task is placed, or a
running task’s input phase finishes, a machine re-orders the
flow priorities of current input phase tasks. Here PushBox
should respect administrator intent. For tasks inside the
same job, their priorities are assigned according to their
placement ordering. For tasks among different jobs, Fair
and FIFO are different.

Suppose a smaller job A and a larger job B with the same
IO-size/computing-time ratio. Resort to the original Fair
intent, administrators hope that job A is not head-blocked
by job B if B arrives a little earlier. By fair-sharing both slots
and network, job A should accomplish earlier. Here we use
the coflow-optimize strategy. Different tasks are sorted in
ascending order by their belonging coflows’ sizes (i.e.,
smallest-coflow-first). Readers may wonder why not also
share the network according to Fair policy? The intuition is
ideal, if the network is not consistently congested and B’s
input size is large enough, job B’s input phase completion
time would not be hurt. At the same time, we can reduce
the completion time of small jobs.

The exception is that one job queue’s policy is FIFO. This
FIFO job queue must have a head job. Only tasks of this
head job follow the smallest-coflow-first rule in a multi-
queue scenario. For other-than-head jobs’ tasks in a FIFO
queue, a reserved lowest priority is given to them. Note that
concurrency is a quite small number, hence each machine
usually uses only a small number of priority values.

This flow priority setting is different from strict bin-pack-
ing rules such as putting a new box at the end of the time
dimension. A new task’s flows might be promoted, while a
running task’s flows might be preempted. This is natural in
online scheduling. Scheduling only gives an estimation of
finish time. Traffic preemption from new jobs is permitted
as long as it is consistent with administrator intent.

5.2 Intent-Oriented Adaption

Not-Hinder Test of Beneficiary Tasks.
With progress-require strategy, the necessary and suffi-

cient condition for yielding a slot is that the network is
already congested. The beneficiary task should only contain
the computing phase. But without care, the beneficiary task
might deteriorate network utilization in certain scenarios.

We demonstrate a Hadoop example in Fig. 4. Job A has 4
reducers R1 to R4. Job B/C each has only one mapper
M1/M2. The job scheduling sequence is A, B, and C. There
are 4 slots in a machine, and the network concurrency limi-
tationm ¼ 3. With Pe~na abstraction, the scheduler puts R1 to
R3 to slots. It judges thatR4 can not make progress because of
the network saturation. In this case, the slot is yielded to fol-
lowing job B’s mapperM1, as shown in Fig. 4a. However,M1

runs too long. When input phases of R1, R2, R3 are all fin-
ished, the network becomes idle. Since all slots are already
occupied, R4 can not be allocated. Thus an unsuitable

beneficiary mapper may hurt network utilization. This is the
conflict between respect intent and slot transfer. Other prog-
ress-require strategy approaches (i.e., DynMR and Shuffle-
Watcher) actually share the same issue.

To prevent this situation, PushBox adds a test for possi-
ble beneficiary tasks (function notHinderTask in Algorithm
1). Given the current NIC utilization and remaining bytes of
all tasks’ input phases, the overall remaining network dura-
tion (i.e., dataTransferTime) can be estimated. If the chosen
task’s computingTime is less than the machine’s dataTransfer-
Time, PushBox considers it as a suitable task and place it.
Fig. 4b shows that a suitable mapper does not hurt network.

Wildcard in Concurrency Control. Consider the administra-
tor intent: allocating a slot also means a share of the network.
Without care, concurrency control may negate this intent.
For example, suppose a machine already uses 3 slots for a
larger job’s input-phase tasks. According to the fairness pol-
icy, a smaller job is the next legitimate job and it progresses
to the reducer stage. However, this machine is saturated so
the reducer tasks of the smaller job cannot be placed. In other
words, the job with smaller coflow is blocked by our concur-
rency control. This is a conflict between concurrency control
and respect administrator intent.

We set a wild-card rule for Fair policy. The details are
shown in function canBePlaced (lines 11-14 of Algorithm 1).
If the size of the new coflow is smaller even than the smallest
coflow in a machine, we let the smaller job has a chance to
compete for bandwidth. Otherwise,we still follow the concur-
rency control rule. We do not prioritize a large coflow,
because its finish time should be later in fair sharing scenarios.

Note that for FIFO mode, we do not give wildcards. An
example is shown in Fig. 4c, a smaller job of R4 is inserted.
If we give it the wild card, the original job is affected. This is
a conflict because the administrator prefers Fig. 4d (lines 15-
16 of Algorithm 1).

5.3 Putting Them All Together

Algorithm 2: Slot-Change Mode. The slotYield flag represents
whether slot transfer from the legitimate job/tasks to benefi-
ciary job/tasks has happened, and we initialize it to 0. Push-
Box traverses the job list to pick the next candidate task by
calling selectTask (line 4). Without a returned task, the slot
should be transferred to the next job (lines 5-7). If the task is
local, the job has the highest allocation opportunity. If this
task belongs to the legitimate user/job, we can place this
task (lines 9-10). Otherwise, it should pass the test to not

Fig. 4. Avoid conflict to intent.

4262 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

Authorized licensed use limited to: Nanjing University. Downloaded on April 16,2025 at 08:28:00 UTC from IEEE Xplore. Restrictions apply.

hurt the bandwidth (lines 11-13). If the task is a remote task
with an input phase, PushBox judges whether the task can
be placed on this machine (lines 15-16). The slotYield flag is
set to 1 if the task can not be placed (lines 17-18).

Algorithm 2. Slot-Change Mode

1 Jobs½ � multi-queue job scheduling order;
2 slotYield 0;
3 foreach job in Jobs do
4 chosenTask selectTask(job.tasks, slot.machine);
5 if chosenTask ¼ null then
6 slotYield 1;
7 continue;
8 if chosenTask is local then
9 if slotYield ¼ 0 then
10 return chosenTask;
11 else
12 if notHinderTask(chosenTask, slot.machine)) then
13 return chosenTask;
14 else
15 if canBePlaced(chosenTask, slot.machine) then
16 return chosenTask;
17 else
18 slotYield 1;
19 return null;

Algorithm 3. Task-Arrival Mode

1 taskMachinePair ;;
2 placed 1;
3 while placed do
4 placed 0;
5 machines½ � sort in ascending order by

dataTransferTime;
6 foreach machine in machines do
7 if machine.#freeSlot ¼ 0 then
8 continue;
9 chosenTask selectTask(tasks, machine);
10 if chosenTask ¼ null then
11 continue;
12 if chosenTask is local then
13 Jobs½ � multiq-queue job scheduling order;
14 if chosenTask.job ¼ Jobs[0] then
15 taskMachinePair.add(chosenTask, machine);
16 placed 1;
17 break;
18 else
19 if notHinderTask(chosenTask, machine) then
20 taskMachinePair.add(chosenTask, machine);
21 placed 1;
22 break;
23 else
24 if canBePlaced(chosenTask, machine) then
25 taskMachinePair.add(chosenTask, machine);
26 update(machine.dataTransferSize);
27 tasks.remove(chosenTask);
28 placed 1;
29 break;

Algorithm 3: Task-Arrival Mode. In this mode, PushBox is
matching a task list with a slot list. taskMachinePair records
matched task-slot pairs and placed controls in the loop. At

the beginning of each loop, PushBox sorts all machines with
free slots in ascending order by dataTransferTime (line 5).
Then we traverse all machines and pick up a task (lines 9).
Suppose the task is local. Before allocation, we must verify
this job have the highest allocation priority (lines 14-17).
Otherwise, we only allocate suitable tasks (lines 18-22). If
the task has an input phase, PushBox judges whether this
task can be placed on a machine (lines 23-29).

6 PUSHBOX IN TESTBED

6.1 Implementation

We have implemented PushBox in Hadoop 3.3.1 with the
YARN manager [6]. We modify Resource Manager (RM),
Node Manager (NM) and Application Master (AM) with
more than 400 lines of source code. The architecture is illus-
trated in Fig. 5.

AM is an independent management process per job,
which periodically queries containers for its waiting tasks
from RM. RM runs PushBox scheduler, which uses delay
scheduling [7] as a framework. We implemented the log-
ging module in RM to record and analyze the relationship
between input size and computing time for each kind of
application, thus we can predict the task computing phase
duration. When enabling the slowstart option, PushBox can
still estimate the order even with partially finished a map
stage, because the input data distribution of a reducer is
similar in all mappers for most Hadoop applications. After
slot allocation, the task together with metadata is sent to the
corresponding machine. NM locates in slave machines to
manage local slots. We implement the network monitoring
model in NM. Reducers use HTTP to pull input data from
remote machines. We modified the underlaying socket
implementation to give each flow a priority by setting the
DSCP field in the IP header.

6.2 Performance Evaluation

Setup. We evaluate our Hadoop implementation in a testbed
where 10 servers connect to a 32-port Arista switch via
10 Gbps links. A master machine runs RM, and 9 slave
machines runNM.AM is a normal process running in a dedi-
cated container. Each server is a DELL PowerEdge R730,
equipped with two 12-core Intel Xeon E5-2650V4 CPU,
256 GB RAM, and a 1 TB HDD. The operating system is
Ubuntu Server 14.04 with Linux 4.4.0 kernel. We map RAM
to diskwith the tmpfs command to store all data inmemory.

Workload.We use terasort as background IO-intensive
jobs and other applications are foreground computation-
intensive jobs. Workload 1 has two terasort (i.e., 300 GB and

Fig. 5. Hadoop implementation.

TIAN ETAL.: PUSHBOX: MAKING USE OF EVERY BITOF TIME TO ACCELERATE COMPLETION OF DATA-PARALLEL JOBS 4263

Authorized licensed use limited to: Nanjing University. Downloaded on April 16,2025 at 08:28:00 UTC from IEEE Xplore. Restrictions apply.

100 Gb) and 28 small query jobs. Workload 2 is mixed by 30
PUMA benchmark applications [38] including a 300 GB ter-
asort, an 100 GB terasort, a 50 GB wordcount, three 5 GB
grep, three 1 GB grep, ten 100 MB teragen, and ten 10 MB
teragen.

Hadoop Parameters. We allocate the same CPU (1 core)
and memory (1.5 GB) container resources for different tasks
(e.g., AMs, mappers, and reducers). The rest of the memory
is used to store data. A machine can run at most 10 slots.
The HDFS block size is 1 GB, and there are 3 replicas for
each block. There is a single job queue with the Fair policy.
For terasort, the number of sampling is reduced to emulate
data skew in intermediate output.

Performance. We evaluate PushBox in two workloads. As
shown in Fig. 6, PushBox performs better than Hadoop in
both workloads. As mentioned above, PushBox saves slots
aggressively thus some small jobs finish faster. Compared
with Hadoop, PushBox reduces the average and tail job
completion time by 49.8% and 21.1%, respectively in work-
load 1, and by 32.6% and 18.8%, respectively in workload 2.

7 LARGE SCALE SIMULATION

7.1 Methodology

We develop an event-driven flow-level simulator to com-
prehensively evaluate PushBox in different scenarios. Our
workload is generated from a collected Facebook log [39].
This log is widely accepted as a benchmark for coflow-
related scheduling work [14], [15], [40], [41], [42], [43].
Bursty traffic patterns can be observed in Fig. 7. We do not
modify jobs’ arrival time and sizes in the log, and there are
over 30 TB shuffle traffics in total.

The Facebook log only contains shuffle traffic of these
jobs. Based on measured production data [44], [45], we gen-
erate the settings of mappers according to shuffle size and
input/output data ratios. In default settings, time spent on
the input phase and the computing phase is predictable.
Unless otherwise specified, we use these settings by default.

Metrics. We use the average job completion time as our
main metric. Besides, we take the 95/99/100th percentile
job completion time into consideration. To validate the
effectiveness of each component, we replace each design
component with a trivial solution or disable it. Then we
compare PushBox with state-of-the-art algorithms, includ-
ing NEAT, ShuffleWatcher, and the default scheduler of
Hadoop. Here we use the CCTTCF version of NEAT with
sequential heuristics and the same network priority levels
for a fair comparison.

Default Settings. In our simulator, we abstract the topol-
ogy similar to our testbed except that the number of
machines is 20 and the number of slots per machine is 20.

We evaluate a blocking network topology with 64 machines
in Section 7.3. This type of network cannot realize all possi-
ble connections between inputs and outputs because an
existing connection in the network blocks a connection
between one free input to another free output. Unless other
specified, we use these as default settings. Every data point
is an average of multiple runs.

7.2 Dissect PushBox

Impacts of Components. First, to demonstrate the benefits of
our network abstraction, we replace it with a global policy
that follows the smallest-coflow-first principle. Here we par-
tition all coflows into several bins according to their size,
and coflows in the same bin have the same network priority.
Results are marked with a suffix GP, which means Global
Priority. Then, we use suffix RS to represent the scenarios
that critical-path-oriented task selection is replaced with a
Random task Selection. Similarly, we use suffix H to repre-
sent the scenarios that not-Hinder policy is disabled and
use W to represent the scenarios that Wild-card in concur-
rency control is disabled.

Results are shown in Fig. 8. It illustrates that each compo-
nent in PushBox is indispensable. Generally, without one
component, the average job completion time grows by 9.9%
(GP), 5.0%(RS), 7.1%(H) and 49.3%(W) respectively, and the
95% tail job completion time has various degrees of growth
(11.1%(GP), 6.5%(RS), 44.8%(H) and 39.4%(W)) (Fig. 8a). To
investigate the impact in detail, we partition all jobs into 7
bins according to their sizes. As shown in Figs. 8b and 8c,
such replacements hurt the performance evenly for jobs in
each bin. For small jobs, such replacements grows average
job completion time by 15.3%(GP), 3.5%(RS), 36.3%(H) and
52.9%(W) respectively. For large jobs, such replacements
grow average job completion time by 6.7%(GP), 4.7%(RS),
9.4%(H) and 39.7%(W) respectively.

Impacts of Information Inaccuracy.Another important prob-
lem is, does PushBox suffer significantly if Pe~na gives esti-
mation of inaccurate input phase duration? Here we
introduce a random estimation errorE, andmultiplying task
input phase duration with it to emulate the estimation error
in real systems. Assuming a random variable U 2 ð0; 1Þ is
sampled from a uniform distribution, thus E ¼ f2U�1, where
f 2 ½1;þ1Þ is the error factor, which means the estimation
error can be as large as f times.

Results (Fig. 8d) show that both average and tail job com-
pletion time increase as the estimation error grows. If the
estimation error grows by 2�, the average job completion
time increases by 13.8%, and tail job completion time
increases by 3.5%. If the estimation error grows by 4�, the

Fig. 6. Testbed results.
Fig. 7. Traffic patterns in Facebook logs.

4264 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

Authorized licensed use limited to: Nanjing University. Downloaded on April 16,2025 at 08:28:00 UTC from IEEE Xplore. Restrictions apply.

average and tail job completion time can increase by 60.7%
and 24.3%. Average job completion time is more sensitive
because the wrong estimation of durations affects task
order, while the tail job completion time is dominated by
throughput. To sum up, PushBox is sensitive to the estima-
tion error, but reasonable inaccuracy cannot severely affect
the performance.

7.3 Comparison Results

We compare PushBox with NEAT and ShuffleWatcher,
which are known as state-of-the-art algorithms. Besides, we
use default scheduling algorithms in Hadoop as the base-
line. We evaluate these algorithms in many different scenar-
ios, such as job queue settings, oversubscribed ratios,
cluster scales, the number of slots per host, workloads, and
so on.

JobQueue Settings.As shown in Fig. 9, we evaluate PushBox
with Fair, FIFO, and Multi-queue (one Fair queue and one
FIFO queue) settings. Fig. 9a shows that PushBox and Shuffle-
Watcher reduce all job completion times, and NEAT only
reduces smaller jobs’ completion time. PushBox performs
best all the time. Compared with Hadoop, ShuffleWatcher
and NEAT, PushBox reduces average job completion time by
57.5%, 40.0%, and 52.1%, respectively. Meanwhile, PushBox
reduces 95% tail job completion time by 87.4%, 39.5% and
65.3%, respectively.

Fig. 9b shows that Hadoop is the best algorithm. The rea-
son is that it fails to comply with the FIFO semantic. A later
and smaller job can finish first because of network fair-

sharing. Actually, original ShuffleWatcher and NEAT also
are better than PushBox by not respecting FIFO intent in net-
working. We implement a network-FIFO version of Hadoop,
marked as Hadoop(FIFO). We also modify ShuffleWatcher
and NEAT to follow the FIFO rule. It is clear that now Push-
Box has the best performance when all algorithms keep the
FIFO semantic. ShuffleWatcher also performs well, because
it has the slot transfer feature. With FIFO semantic, the opti-
mization room for network scheduling is very small. Com-
pared with Hadoop(FIFO), ShuffleWatcher, and NEAT,
PushBox reduces the average job completion time by 24.7%,
2.7% and 18.7%, and tail job completion time by 46.8%, 19.7%
and 38.1%, respectively.

We mix a FIFO queue and a Fair queue to constitute the
multi-queue setting. All small jobs (<100 MB) reside in the
FIFO queue to prevent one big job from blocking small jobs.
Fig. 9c shows the average job completion time of Hadoop,
ShuffleWatcher and NEAT decrease but PushBox performs
even better. Compared with Hadoop, ShuffleWatcher and
NEAT, PushBox reduces the average job completion time
by 21.4%, 19.2% and 21.2% and 99% tail job completion time
by 33.4%, 30.3% and 33.2%, respectively.

Oversubscribed Ratios. We evaluate PushBox with differ-
ent bandwidth fan-in ratios in an oversubscribed network.
Results are shown in Fig. 10. Here we have 4 clusters and 16
machines in each cluster. The topology is layered with 64
machines. The fan-in factor varies from 1:1 to 6:1, which
means the total intra-cluster bandwidth is 1-6 times larger
than the total inter-cluster bandwidth.

The average and tail job completion time of all schedulers
becomes larger as the oversubscribed ratio increases,
because of the bandwidth limitation of the core network.
Results show that PushBox performs well in oversubscribed
topologies. Although PushBox is a joint optimization of com-
puting and network, its main benefits come from network
scheduling. Usually, the more congested network is, the bet-
ter the performance of PushBox. Compared with Hadoop,
ShuffleWatcher, and NEAT, PushBox reduces the average
job completion time by 31.7%-65.5%, 23.7%-48.8% and
21.8%-56.6%, and tail job completion time by 30.1%-50.9%,
30.3%-47.0%, and 29.4%-51.9%, respectively.

What if More Resources. Without changing workload, we
evaluate PushBox in different cluster scales from 10 to 110
machines. As shown in Fig. 11, as the cluster scale grows
larger, the performance of all algorithms becomes better and
the differences among them become smaller. With more
hosts, there are more network and slot resources. Both net-
work and slot bottlenecks gradually diminish. Compared

Fig. 8. Every component is indispensable.

Fig. 9. Performance in different settings.

TIAN ETAL.: PUSHBOX: MAKING USE OF EVERY BITOF TIME TO ACCELERATE COMPLETION OF DATA-PARALLEL JOBS 4265

Authorized licensed use limited to: Nanjing University. Downloaded on April 16,2025 at 08:28:00 UTC from IEEE Xplore. Restrictions apply.

with Hadoop, ShuffleWatcher and NEAT, PushBox
reduces the average job completion time by 22.7%-67.0%,
17.3%-43.0% and 13.2%-57.9%, respectively. Meanwhile,
for the tail job completion time, PushBox is better than
others by 24.9%-66.2%, 19.1%-57.9% and 23.77%-63.0%,
respectively.

What if More Slots Per Machine. As shown in Fig. 12, we
evaluate PushBox with different numbers of slots per
machine. Here we only change the number of slots, hence
network resource is unchanged. Results show that when
slots are increasing, the job completion time of PushBox and
ShuffleWatcher is gradually decreasing. It is intuitive
because more tasks are allowed to execute concurrently.
However, the job completion time of Hadoop and NEAT is
increasing when the number of slots is larger than 12. This
is counter-intuitive and we dig into the logs. Because of less
bandwidth allocated to a specific task, larger coflow jobs
have a longer job completion time. ShuffleWatcher has a
worse average job completion time than others when there
are 8 slots because slots are insufficient to transfer to help
other jobs. Although PushBox also cannot transfer slots to
help other jobs, a good network abstraction brings better
performance. Compared with Hadoop, ShuffleWatcher and
NEAT, PushBox reduces the average job completion time
by 31.3%-57.5%, 22.9%-40.0% and 21.7%-53.1%, and tail job
completion time by 4.5%-40.2%, 6.9%-33.0% and 4.9%-
39.2%, respectively.

What if Increase Workload. As shown in Fig. 13, we evalu-
ate PushBox with different workloads by scaling job size in
the Facebook log and keeping the resources unchanged.
Note that the workload is normalized by the original traffic
load in figures, while network IO and computation are
scaled with the same factor. For all evaluated algorithms,
both the average and tail job completion time demonstrate a
growing trend as traffic load increases. PushBox performs
best all the time. Compared with Hadoop, ShuffleWatcher
and NEAT, PushBox reduces the average job completion
time by 51.3%-64.9%, 35.9%-41.5%, and 46.4%-58.7%, and
tail job completion time by 33.8%-67.0%, 27.5%-56.3%, and
33.2%-66.8% respectively.

7.4 Scalability

Complexity Analysis. To demonstrate Pushbox’s scalability,
we analyze the complexity of the algorithm from a theoreti-
cal point of view. The key variables involved in the algo-
rithm are first defined: the total number of job queues in a
multi-job queue is p, the maximum number of tasks in all
job queues is n, and the total number of corresponding
machines is m. Then we perform a time complexity analysis
for each of the critical functions in the algorithm.

� selectTask : the function has two branches, and the
judgment of which branch to enter is based on
whether tasks have the opportunities of locality. The
time complexity of the judgment can be regarded as
OðnÞ. Pushbox will select a task according to the
locality policy if the first branch is entered, and the
time complexity can be consideredOðnÞ. Conversely,
if it enters another branch, Pushbox will sort all wait-
ing tasks in descending order of input size and select
the first task. Due to the inclusion of sorting, the time
complexity of this process is at least OðnlognÞ.
Therefore the total time complexity of this function
is OðnlognÞ.

� canBePlaced : this function determines if the selected
task can be placed, containing only two comparisons
so that the time complexity can be consideredOð1Þ.

� notHinderTask : this function determines whether
the possible beneficiary tasks harm the network and
contains only one comparison, so the time complex-
ity is also Oð1Þ.

Specifically for the two scheduling models, the time and
space complexity analyses are shown below.

� Slot-change: in this mode, PushBox traverses the p job
queues in turn. In each iteration, the primary time
overhead is in the calls to the three critical functions
mentioned above. First, the list of tasks is traversed
by calling selectTask to select a candidate task. If
the candidate task is not legitimate, a notHinderTask
test is called not to compromise bandwidth. If the

Fig. 10. Impact of oversubscribed ratio.

Fig. 11. Impact of cluster resource.

Fig. 12. Impact of slots per machine.

Fig. 13. Impact of workload.

4266 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

Authorized licensed use limited to: Nanjing University. Downloaded on April 16,2025 at 08:28:00 UTC from IEEE Xplore. Restrictions apply.

task is a remote task with an input phase, PushBox
will call canBePlaced to determine if it can be placed
on this machine. Based on the above analysis, the
time complexity of one traversal is OðnlognÞ for a
total of p rounds, so the total time complexity of the
pattern is Oðp� nlognÞ. Since the algorithm does not
use any additional storage space, the space complex-
ity of the algorithm is Oð1Þ.

� Task-arrival: the primary time overhead of Task-
arrival mode is concentrated on sorting all machines
with free slots and the traversal of all machines. Push-
box needs to call the selectTask function for each
machine traversal, with time complexity ofOðnlognÞ.
In contrast, the rest of the operation time overhead
can be treated as a constant. Thus the m-round tra-
versal time complexity is Oðm� nlognÞ and the total
pattern time complexity is Oðm� nlognÞ. The space
complexity of this algorithm is Oðmaxðm;nÞÞ since
the taskMachinePair that records matching task-slot
pairs occupies the space ofmaxðm;nÞ.

Scheduling Overhead. A theoretical analysis of the scal-
ability of Pushbox is not enough. We also evaluate the algo-
rithm scheduling overhead through simulation. Based on
Sincronia [16], we generated Coflow workloads with the
same distribution as the Facebook log. The scheduling over-
head of Pushbox was measured by varying the number of
Coflow of the input workloads while keeping the machine
resources constant. The number of Coflow in the generated
workloads scales from 400 to 1400. Fig. 14a shows the total
overhead of Pushbox, while Fig. 14b shows a box plot of the
single scheduling time for different workloads. Results
show that Pushbox’s total scheduling overhead is approxi-
mately linear concerning the workload, while Pushbox’s
single scheduling overhead remains stable at around 35 to
50 microseconds despite the increasing workload.

Summary. Through the above theoretical analysis and
experimental evaluation, we can conclude that Pushbox has
low complexity and stable single scheduling overhead,
which shows good scalability.

8 DISCUSSION

How to Get or Predict a Task’s Input Size?A major concern of
explicit network scheduling is the lack of accurate informa-
tion on network footprint. For example, some researchers
assume that network footprint is completely unknown a pri-
ori [15], [46]. This is not the case in many scenarios. Rich
traffic demand information already exists in the log and
meta-data files. It has been reported that for Hadoop and
Spark, a flow’s source, destination, and footprint can be

nearly 100% accurately extracted when a computation stage
finishes [25], [26]. Further, resource requirements of recur-
ring business-critical jobs can be accurately predicted [11].
For example, the input/output data ratio is relatively stable
for a specific application [44], [45]. There is much existing
work that estimates job sizes. We rely on them to sort the
priority order of jobs. Evaluations demonstrate that our
approach is robust to estimation error in a large range.

Why Output is Not a Phase of Task Lifetime. For tasks other
than the final stage, the output is modeled as input to the
following stage’s task input phase. For a task in the final
stage, its output data is the final job result in memory. Even
if the output needs persistence in distributed storage, the
writing procedure is not in the critical path and can be
detoured to idle network links [47].

Other Related Work. There are also many cluster schedul-
ing works focusing on either fairness(e.g., [48]), or straggler
mitigation(e.g., [49]). These researches are complementary
to the objective of this paper. For example, a straggler task
is always on the critical path [50]. PushBox gives priority in
task selection for a straggler task.

Future Work. There are two directions. First, PushBox
needs the extension to support heterogeneous scenarios.
For example, heterogeneous machines exist in clusters due
to the business purchase cycle. Also, different applications
might need different containers with different configura-
tions of CPU cores and memory. Dynamic slot partition
support is required. Second, we are porting PushBox to
Spark. We also hope to extend PushBox to support other
data-parallel systems.

ACKNOWLEDGMENTS

The authors would like to thank anonymous reviewers for
their valuable comments.

REFERENCES

[1] K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica, “Sparrow:
Distributed, low latency scheduling,” in Proc. 24th ACM Symp.
Oper. Syst. Princ., 2013, pp. 69–84.

[2] A. Shinnar, D. Cunningham, V. Saraswat, and B. Herta, “M3R:
Increased performance for in-memory hadoop jobs,” Proc. VLDB
Endowment, vol. 5, no. 12, pp. 1736–1747, 2012.

[3] J. Ekanayake et al., “Twister: A runtime for iterative MapReduce,”
in Proc. 19th ACM Int. Symp. High Perform. Distrib. Comput., 2010,
pp. 810–818.

[4] M. Zaharia et al., “Resilient distributed datasets: A fault-tolerant
abstraction for in-memory cluster computing,” in Proc. 9th USE-
NIX Conf. Netw. Syst. Des. Implementation, 2012, pp. 15–28.

[5] Apache hadoop. 2019. [Online]. Available: http://hadoop.apache.org
[6] V. K. Vavilapalli et al., “Apache hadoop yarn: Yet another resource

negotiator,” in Proc. 4th Annu. Symp. Cloud Comput., 2013, pp. 1–16.
[7] M. Zaharia, D. Borthakur, J. S. Sarma, K. Elmeleegy, S. Shenker,

and I. Stoica, “Delay scheduling: A simple technique for achieving
locality and fairness in cluster scheduling,” in Proc. 5th Eur. Conf.
Comput. Syst., 2010, pp. 265–278.

[8] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar, and A.
Goldberg, “Quincy: Fair scheduling for distributed computing
clusters,” in Proc. ACM SIGOPS 22nd Symp. Oper. Syst. Princ.,
2009, pp. 261–276.

[9] G. Ananthanarayanan et al., “Reining in the outliers in Map-
Reduce clusters using Mantri,” in Proc. 9th USENIX Conf. Oper.
Syst. Des. Implementation, 2010, vol. 1, pp. 265–278.

[10] F. Ahmad, S. T. Chakradhar, A. Raghunathan, and T. Vijaykumar,
“ShuffleWatcher: Shuffle-aware scheduling in multi-tenant Map-
Reduce clusters,” in Proc. USENIX Conf. Annu. Tech. Conf., 2014,
pp. 1–12.

Fig. 14. Scheduling Simulation Overhead.

TIAN ETAL.: PUSHBOX: MAKING USE OF EVERY BITOF TIME TO ACCELERATE COMPLETION OF DATA-PARALLEL JOBS 4267

Authorized licensed use limited to: Nanjing University. Downloaded on April 16,2025 at 08:28:00 UTC from IEEE Xplore. Restrictions apply.

http://hadoop.apache.org

[11] V. Jalaparti, P. Bodik, I. Menache, S. Rao, K. Makarychev, and M.
Caesar, “Network-aware scheduling for data-parallel jobs: Plan
when you can,” in Proc. ACM Conf. Special Int. Group Data Com-
mun., 2015, pp. 407–420.

[12] J. Tan et al., “DynMR: Dynamic MapReduce with reduce task
interleaving and maptask backfilling,” in Proc. 9th Eur. Conf. Com-
put. Syst., 2014, pp. 1–14.

[13] F. R. Dogar, T. Karagiannis, H. Ballani, and A. Rowstron,
“Decentralized task-aware scheduling for data center networks,”
ACMSIGCOMMComput. Commun. Rev., vol. 44, pp. 431–442, 2014.

[14] M. Chowdhury, Y. Zhong, and I. Stoica, “Efficient coflow schedul-
ing with varys,” in Proc. ACM Conf. Special Int. Group Data Com-
mun., 2014, pp. 443–454.

[15] M. Chowdhury and I. Stoica, “Efficient coflow scheduling without
prior knowledge,” ACM SIGCOMM Comput. Commun. Rev.,
vol. 45, pp. 393–406, 2015.

[16] S. Agarwal, S. Rajakrishnan, A. Narayan, R. Agarwal, D. Shmoys,
and A. Vahdat, “Sincronia: Near-optimal network design for
coflows,” in Proc. Conf. ACM Special Int. Group Data Commun.,
2018, pp. 16–29.

[17] B. Tian et al., “Scheduling dependent coflows to minimize the total
weighted job completion time in datacenters,” Comput. Netw.,
vol. 158, pp. 193–205, 2019.

[18] L. Popa, G. Kumar, M. Chowdhury, A. Krishnamurthy, S. Ratnas-
amy, and I. Stoica, “FairCloud: Sharing the network in cloud
computing,” in Proc. ACM Conf. Special Int. Group Data Commun.,
vol. 42, no. 4, pp. 187–198, 2012.

[19] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron, “Towards
predictable datacenter networks,” in Proc. ACM Conf. Special Int.
Group Data Commun., vol. 41, no. 4, pp. 242–253, 2011.

[20] K. Liu et al., “Exploring token-oriented in-network prioritization
in datacenter networks,” IEEE Trans. Parallel Distrib. Syst., vol. 31,
no. 5, pp. 1223–1238, May 2020.

[21] J. Zheng et al., “Django: Bilateral coflow scheduling with predic-
tive concurrent connections,” J. Parallel Distrib. Comput., vol. 152,
pp. 45–56, 2021.

[22] A. Greenberg et al., “VL2: A scalable and flexible data center
network,” in Proc. ACM Conf. Special Int. Group Data Commun.,
2009, vol. 39, pp. 51–62.

[23] A. Singh et al., “Jupiter rising: A. decade of clos topologies and
centralized control in Google’s datacenter network,” in Proc. ACM
Conf. Special Int. Group Data Commun., 2015, pp. 183–197.

[24] M. Zaharia, “Job scheduling with the fair and capacity sched-
ulers,” Invited Talks in Hadoop Summit, 2009.

[25] Y. Peng, K. Chen, G. Wang, W. Bai, Z. Ma, and L. Gu,
“Hadoopwatch: A first step towards comprehensive traffic fore-
casting in cloud computing,” in Proc. IEEE Conf. Comput. Com-
mun., 2014 pp. 19–27.

[26] H. Wang et al., “FLOWPROPHET: Generic and accurate traffic
prediction for data-parallel cluster computing,” in Proc. IEEE 35th
Int. Conf. Distrib. Comput. Syst., 2015, pp. 349–358.

[27] R. Wilhelm et al., “The worst-case execution-time problem-over-
view of methods and survey of tools,” ACM Trans. Embedded Com-
put. Syst., vol. 7, no. 3, pp. 1–53, 2008.

[28] H. Chang, M. Kodialam, R. R. Kompella, T. Lakshman, M. Lee,
and S. Mukherjee, “Scheduling in MapReduce-like systems for
fast completion time,” in Proc. IEEE Conf. Comput. Commun., 2011,
pp. 3074–3082.

[29] F. Chen, M. Kodialam, and T. Lakshman, “Joint scheduling of
processing and shuffle phases in MapReduce systems,” in Proc.
IEEE Conf. Comput. Commun., 2012, pp. 1143–1151.

[30] M. Chowdhury, M. Zaharia, J. Ma, M. I. Jordan, and I. Stoica,
“Managing data transfers in computer clusters with orchestra,” in
Proc. ACM Conf. Special Int. Group Data Commun., 2011, vol. 41,
pp. 98–109.

[31] F. Giroire, N. Huin, A. Tomassilli, and S. P�erennes, “When net-
work matters: Data center scheduling with network tasks,” in
Proc. IEEE Conf. Comput. Commun., 2019, pp. 2278–2286.

[32] A. Munir, T. He, R. Raghavendra, F. Le, and A. X. Liu, “Network
scheduling aware task placement in datacenters,” in Proc. 12th Int.
Conf. Emerg. Netw. EXperiments Technol., 2016, pp. 221–235.

[33] Y. Kwon, M. Balazinska, B. Howe, and J. Rolia, “SkewTune: Miti-
gating skew in MapReduce applications,” in Proc. ACM SIGMOD
Int. Conf. Manage. Data, 2012, pp. 25–36.

[34] Q. Chen, J. Yao, and Z. Xiao, “LIBRA: Lightweight data skew miti-
gation in MapReduce,” IEEE Trans. Parallel Distrib. Syst., vol. 26,
no. 9, pp. 2520–2533, Sep. 2015.

[35] B. Tian et al., “Using the macroflow abstraction to minimize
machine slot-time spent on networking in hadoop,” in Proc. 2nd
Asia-Pacific Workshop Netw., 2018, pp. 36–42.

[36] Y.-K. Kwok and I. Ahmad, “Dynamic critical-path scheduling: An
effective technique for allocating task graphs to multiprocessors,”
IEEE Trans. Parallel Distrib. Syst., vol. 7, no. 5, pp. 506–521,May 1996.

[37] H. Huang and H. Shen, “Fairness-aware scheduling of dynamic
cross-job coflows in shared datacenters based on meta learning,”
Comput. Elect. Eng., vol. 100, 2022, Art. no. 107815.

[38] Puma benchmarks and dataset downloads. 2019. [Online]. Avail-
able: https://engineering.purdue.edu/puma/datasets.htm

[39] Coflow benchmark. 2019. [Online]. Available: https://github.
com/coflow/coflow-benchmark

[40] Z. Qiu, C. Stein, and Y. Zhong, “Minimizing the total weighted
completion time of coflows in datacenter networks,” in Proc. 27th
ACM Symp. Parallelism Algorithms Archit., 2015, pp. 294–303.

[41] X. S. Huang, X. S. Sun, and T. Ng, “Sunflow: Efficient optical cir-
cuit scheduling for coflows,” in Proc. 12th Int. Conf. Emerg. Netw.
EXperiments Technol., 2016, pp. 297–311.

[42] Y. Li et al., “Efficient online coflow routing and scheduling,” in Proc.
17th ACM Int. Symp.Mobile AdHocNetw. Comput., 2016, pp. 161–170.

[43] H. Zhang, L. Chen, B. Yi, K. Chen, M. Chowdhury, and Y. Geng,
“CODA: Toward automatically identifying and scheduling
coflows in the dark,” in Proc. Conf. ACM SIGCOMM Conf., 2016,
pp. 160–173.

[44] Y. Chen, A. Ganapathi, R. Griffith, and R. Katz, “The case for eval-
uating MapReduce performance using workload suites,” in Proc.
IEEE 19th Annu. Int. Symp. Modelling Anal. Simul. Comput. Telecom-
mun. Syst., 2011, pp. 390–399.

[45] Y. Chen, S. Alspaugh, andR. Katz, “Interactive analytical processing
in Big Data systems: A cross-industry study of MapReduce work-
loads,” Proc. VLDBEndowment, vol. 5, no. 12, pp. 1802–1813, 2012.

[46] W. Bai, L. Chen, K. Chen, D. Han, C. Tian, and H. Wang,
“Information-agnostic flow scheduling for commodity data cen-
ters,” in Proc. 12th USENIX Conf. Netw. Syst. Des. Implementation,
2015, pp. 455–468.

[47] M. Chowdhury, S. Kandula, and I. Stoica, “Leveraging endpoint
flexibility in data-intensive clusters,” in Proc. ACM Conf. Special
Int. Group Data Commun., 2013, vol. 43, pp. 231–242.

[48] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker,
and I. Stoica, “Dominant resource fairness: Fair allocation of mul-
tiple resource types,” in Proc. 8th USENIX Conf. Netw. Syst. Des.
Implementation, 2011, vol. 11, pp. 323–336.

[49] M. Zaharia, A. Konwinski, A. D. Joseph, R. H. Katz, and I. Stoica,
“Improving MapReduce performance in heterogeneous environ-
ments,” in Proc. 8th USENIX Conf. Oper. Syst. Des. Implementation,
2008, vol. 8, pp. 29–42.

[50] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Stoica, “Effective
stragglermitigation: Attack of the clones,” inProc. 10thUSENIXConf.
Netw. Syst. Des. Implementation, 2013, vol. 13, pp. 185–198.

Chen Tian received the BS, MS, and PhD degrees
from the Department of Electronics and Informa-
tion Engineering, Huazhong University of Science
and Technology, China, in 2000, 2003, and 2008,
respectively. He is a professor with State Key Labo-
ratory for Novel Software Technology, Nanjing Uni-
versity, China. He was previously an associate
professor with the School of Electronics Informa-
tion and Communications, Huazhong University of
Science and Technology, China. From 2012 to
2013, he was a postdoctoral researcher with the

Department of Computer Science, Yale University. His research interests
include data center networks, network function virtualization, distributed
systems, internet streaming, and urban computing.

Yi Wang received the BS, MS, and PhD degrees
from the Department of Electronics and Informa-
tion Engineering, Huazhong University of Science
and Technology, China, in 2000, 2003, and 2009
respectively. She is currently a lecturer with the
School of Modern Posts, Nanjing University of
Posts and Telecommunications, China. Her
research interest is cloud computing.

4268 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

Authorized licensed use limited to: Nanjing University. Downloaded on April 16,2025 at 08:28:00 UTC from IEEE Xplore. Restrictions apply.

https://engineering.purdue.edu/puma/datasets.htm
https://github.com/coflow/coflow-benchmark
https://github.com/coflow/coflow-benchmark

Bingchuan Tian received the BE degree from the
Department of Computer Science and Technol-
ogy, Nanjing University of Aeronautics and Astro-
nautics, China, in 2016, and the PhD degree from
the Department of Computer Science and Tech-
nology, Nanjing University, China, in 2021. His
research interests include intent-based network-
ing, congestion control, and network scheduling.

Yang Zhao received the master’s degree from
the Department of Computer Science and Tech-
nology, Nanjing University, Nanjing, China, in
2019. His research interests focus on datacenter
network and wireless charging.

Yuhang Zhou received the BS degree from the
Department of Computer Science and Technol-
ogy, Nanjing University, China. He is currently
working toward the MS degree with the Depart-
ment of Computer Science and Technology, Nanj-
ing University. His research interests include data
center networks and distributed machine learning
systems.

Chenxu Wang is currently working toward the
BEng degree with the School of Artificial Intelli-
gence, Nanjing University, China. His research
interests include datacenter networks and data
processing unit.

Haoran Guan is currently working toward the BS
degree with the Major of Data Science and Major
of Software Development, University of Sydney,
Australia. His research interests include data
analysis and machine learning systems.

Wanchun Dou received the PhD degree in
mechanical and electronic engineering from the
Nanjing University of Science and Technology,
China, in 2001. He is currently a full professor of
the State Key Laboratory for Novel Software
Technology, Nanjing University. From April 2005
to June 2005 and from November 2008 to Febru-
ary 2009, he respectively visited the Department
of Computer Science and Engineering, Hong
Kong University of Science and Technology,
Hong Kong, as a visiting scholar. Up to now, he

has chaired three National Natural Science Foundation of China projects
and published more than 60 research papers in international journals
and international conferences. His research interests include workflow,
cloud computing, and service computing.

Guihai Chen received the BS degree in com-
puter software from Nanjing University, in 1984,
the ME degree in computer applications from
Southeast University, in 1987, and the PhD
degree in computer science from the University
of Hong Kong, in 1997. He is a distinguished pro-
fessor of Nanjing University. He had been invited
as a visiting professor by Kyushu Institute of
Technology in Japan, University of Queensland in
Australia and Wayne State University. He has a
wide range of research interests with focus on

parallel computing, wireless networks, data centers, peer-to-peer com-
puting, high-performance computer architecture and data engineering.
He has published more than 350 peer-reviewed papers, and more than
200 of them are in well-archived international journals such as IEEE
Transactions on Parallel and Distributed Systems, IEEE Transactions
on Computers, IEEE Transactions on Knowledge and Data Engineering,
IEEE/ACM Transactions on Networking and ACM Transactions on Sen-
sor Networks, and also in well-known conference proceedings such as
HPCA, MOBIHOC, INFOCOM, ICNP, ICDCS, CoNext, and AAAI. He
has won 9 paper awards including ICNP 2015 Best Paper Award and
DASFAA 2017 Best Paper Award.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

TIAN ETAL.: PUSHBOX: MAKING USE OF EVERY BITOF TIME TO ACCELERATE COMPLETION OF DATA-PARALLEL JOBS 4269

Authorized licensed use limited to: Nanjing University. Downloaded on April 16,2025 at 08:28:00 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

