£5 ASPLOS 2025

Rotterdam, The Netherlands

Squeezing Operator Performance Potential
for the Ascend Architecture

Yuhang Zhou!, Zhibin Wang!, Guyue Liu?, Shipeng Li', Xi Lin!, Zibo Wang', Yongzhong Wang?>,
Fuchun Wei?, Jingyi Zhang?, Zhiheng Hu?, Yanlin Liu?, Chunsheng Li’, Ziyang Zhang?,
Yaoyuan Wang?, Bin Zhou*, Wanchun Dou'!, Guihai Chen', Chen Tian'

I'Nanjing University ? Peking University * Huawei Technologies Co., Ltd. * Shandong University

hikd N

HUAWEI

mlinEeElaE

% Introduction

@ System Design
Outline @ Case Study

M Evaluation
@ Conclusion

mlsEsBinfles

% Introduction

Outline

mlsEsBinfles

Al Domain-Specific Architecture (DSA)

& deepseek @Qwen2.5

Deep learning models

LLama 3

OPEN SORA

I Better arithmetic support

Domain-specific architecture

| ERiw
.l‘l'..’,‘w:.
Trillium TPU i LR
1 R
:M pio].|,

NVIDIA GPU Google TPU Huawei Ascend NPU Cambricon MLU

Operator Optimization Needs Profiling

‘ NVIDIA

Nsight
Compute

* GPU Speed Of Light Throughput

f the throughput for compute and m
or each indiv

Cache Throughput
Throughput [%]

The kernel is utili

Bottl k -
OLIEnECk nit. Start by ana

Roofline Analysis The rati :1. The kernel ack

R What about
Floating Point Operations Roofline

Performance [FLOP/s]
(1=1e+12)

Single Precision Achieved Value
Arithmetic Intensity [FLOP/byte]: 7230
o Performance [FLOP/s]: 114,672,863,182.06
0
Arithmetic Intensity [FLOF/byte]

Ascend Architecture

Cube [«—— | Vector [—» Scalar

L1 L1 L1 | LoA LB | LOC

L2 Cache L1 |« UB

[——— — 7 S f awcore /

HBM Memory _"‘ Global Memory

GPU (NVIDIA) NPU (Ascend)

Compute Unit Memory Unit

Dedicated Compute Units

99.2%
Transformer computation Cube |« Vector [&q | Scalar
~10% 1 Comouts .
(Pooling, - Computing precision
| LOA LoB | ™ LOC ~ Cube: INT8/FP16
~90%) T T A
(MatMul, Convolution, . Vector: INT8/FP16/FP32
Fully connected) B ¥ Bv
- ~ Scalar: INT32/FP32/...
,,,,, 1 T AlCore &
v

Global Memory

Customized Memory Architecture

Cube |&—— | Vector |« —» Scalar

€ Asymmetric bandwidth 1 I
0B ||+ LoC
X
' - @ Multiple memory buffers
v v
L1 |« UB
/ | i i} AlCore ./
@) Cross-level transfers v
Global Memory
Compute Unit Memory Unit —®» MTE-GM —» MTE-L1 —» MTE-UB

Efficient Transfer Control Units

.........

MTE-L1 T | ‘ v v
] ? AlCore ./ ,
... Memory transfer englne
MIE-GM Global Memory MITE-LE
Compute Unit Memory Unit —®» MTE-GM —» MTE-L1 —» MTE-UB

Instruction Pipeline

o e — — — — — — — — —

~N
Instr Queues

Instr / \ Cube

— 1 C{Zi;; > Scalar | 3 f MTE-GM | GM-=L1 ‘ GM->LOB)
| | | | |
' |
: Cube : L?A LOB Cube Mul ~ Parallel
|
| Vector : @ [Parallel]
| v | MTE-L1 L1->LOA

=

: ./nStr MTE-GM : L1 Tensor B 1] Ly Sequential
| Dispatch | D L @D @ @
: MTE-L1 i Tensor A GM
' [
\ - / " = Il "
AN MTE-UB | , Example of matrix multiplication A x #

~N ———_ e e e e e e e e —_—_———

Inter parallelism, intra serialism.

Summary of Ascend Architecture

Pros Ascend Architecture Cons

e —_——— e — — — — — —— —

NMNAaAiAAtAA AAarAIitA T aEA

Accurately identifying operator bottleneck is a
challenging, but essential task!

VAVAVAY,

Operational flexibility

aul|a

Efficient transfer control and
\ instruction pipeline /

—_——— ——_—— -

\———————————————————————‘/

Existing Operator Performance Analysis

P(FLOP/s) P(FLOP/s) Tensor Core
Compute Performance A Z ./ o /
FP16
e Performance point ° e ¢
N
N
N ¢ FP32
Compute \e@“\
Bound
> >
Al(FLOPs/Byte) Al(FLOPs/Byte)

DRAM Roofline Hierarchical Roofline

Limitations of Performance Analysis

P(FLOP/s) Cube INT8
A / o e CubeFP16
/o e Vector FP32

9 precisions

180 combinations!

20 transfers

>
Al(FLOPs/Byte)

[(i) Massive combinations between precisions and transfers]

Limitations of Performance Analysis

4 FP16 INTS h
Actual - Mull Mul2
| Mull > FP16
Naive
| N Mul2 > N8
P(FLOP/s)
A Cube INTS
5 Underutilization™?
@ﬂ Cube FP16
S
INTS o
33%
>
Al(FLOPs/Byte)

[(ii) Incorrect analysis by ignoring the sequential execution]

Our Goals

Problems

[Complicated analysis

[Incorrect analysis

[Non-trivial optimization

Solutions

Simplified and accurate operator performance analysis

)
)

Effective guidance for operator optimization

& System Design

Outline

mlsEsBinfles

Overview

Software

Application

Framework

Runtime

le

[Operator I

Hardware

Operator Optimization

Profiling and Component Abstraction

Compute component

Cube Vector Scalar
Cube Vector |« —» Scalar
Cgmpute o3z || [epte [~ [ints) ?r[])eratlopg for
LOA LOB LOC ueue € precision
A 2 A
—|'_'— ‘ MTE component
Y Y
L1 |« [UB
MTE-GM MTE-L1 MTE-UB
t I i} AlCore -
A 4
MTE Bytes for
Gl b | M GM->L1 GM->L0A ¢ | |IGM->LOB|| -+ ||GM->UB
oparviemory Queue l the transfer
\ J
Y

Actual execution time of the component

Component-based Roofline Model

Operator-aware ideal performance

4 Ocube .)
A Acube = T Profiling
A Ridge Point Usube = ICUbe total
ol
b
E Memory Bou%___?f}fr?rzt_lt_ef ?_O_U_Ilq____ e Lube Different precisions?
o ,‘,,,' Pthreshold I Zprec Oprec Harmonlc Mean
. cube — , :
.,.’ 0‘-;@\6 Underutilization prec gpl’ec ArlthmetIC POWGF
/./ ot \ prec j
: Al (FLOPs/Byt >
(FLOPs/Byte) Underutilization Analysis
Utilization of component can (0 U Acube Ocupe Tcube)
cube — — |
reflect the operator’s bottleneck. Icuve Tcuve " Lcuve Ttotal
Ecybe Rcybe
Rihreshold
E. < Rcomponen Rihresho
@ component Uttreshold y % p t < Rthreshold
L Inefficient Component Insufficient Parallelism)

Pruning, Visualization and Analysis

Pruning results Roofline Analysis of Add_RelLU Operator
P(FLOP/ 10°
(A s) Cube Vector
/./. /. Vector o L
/7 o7 e Scalar @ 104 , ‘Vector+MTE-GM><@12r
4 a .
’ Qe o Q Vector+MTE-UB
$“’ /&,0 o glol- & > 38.42%
> from180to 7! 2
10°7 “Scalar+MTE-GM
®Scalar+MTE-UB
> 102 10°* 10° 10* 102 10°
Al(FLOPs/Byte) Al (GFLOPs/GByte)
v’ Component abstraction U omponent OF Vector+MTE-UB (38.42%):

Underutilization
R component Of MTE-GM (58.68%):
Insufficient parallelism

v’ Remove irrelevant components
v" Remove impossible combinations

Outline @ Case Study

mlsEsBinfles

Case Study: Optimization of Add RelU Operator

Add_ReLU(x) = ReLU(x + ¢)

® Vector ®

Add RelU MTE-GM | GM->UB

Q) @ Vector Add | RelLU

MTE-GM MTE-UB

—» UB MTE-UB UB->GM

M

vk » @ ® @
Data flow Instruction timeline

Iteration 1: Reducing spatial dependency

10°
. Vect
Original Code / scor
@ --- B 10% Vector+MTE-GM><213"
oo Vector+MTE-UB o o .
@ ub to gm(gm 1, ub 1); 9 101] 38.42% Insufficient parallelism
o 0
@ gm to ub(ub 1, gm 2); = (38.42%)
@ ... 10%Scalar+MTE-GM
®Scalar+MTE-UB
102 '10' 10° 10! 107 10°
Al (GFLOPs/GByte)
10° y
. . ector
Optimized Code
T 1024 < ector+MTE-GMgcalar
@ .. n E_,*- Vector+MTE-UB
66.24%
o
@ ub _to gm(gm 1, ub 2); = 101 MTE-UB bound
G
@ gm to ub(ub 1, gm 2); = (66.24%)
- o o 100 calar+MTE-GM
@ - .- ®Scalar+MTE-UB

1072 107! " 10° 10! 102 103
Al (GFLOPs/GByte)

Iteration 2: Minimizing redundant transfer

Original Code Vector
® for i = 1 to n do

ector+MTE-GMgcgalar

%E ®Vector+MTE-UB
@ gm to ub(ub 1, c); S o et MTE-UB bound
@ S (66.24%)

The single operator time reduced by 1.73x.
The component_utilization up by 32.1%.

The total inference latency down by 244.261 ps.

ector+MTE-GM gcalar

@ gm_tU_Ub(Ub l, C); g Vect35+5l\g'|;/E-UB
. O . 0
@ for i = 1 to n do Z 101 MTE-UB bound
® o oA (70.52%)
Scalar+MTE-UB
@® end for

102 10! 10° 10! 102 103
Al (GFLOPs/GByte)

Optimization Experience

We summarize the common bottleneck causes and optimization strategies.

Bottleneck Compute MTE Insufficient | Inefficient | Inefficient
Cause Bound Bound Parallelism Compute MTE
Bottleneck Cause and Optimization Strategy
Operator Compute | MTE | Insufficient | Inefficient | Inefficient | Speedup
Bound | Bound | Parallelism MTE Compute
Add_ReLU MRT RSD 1.72
Depthwise MRT | AIS,RUS,PP ITG 1.26
Strategy AvgPool AIP 4.31
Mul RSD 1.34
Conv2D MRT RSD 2.65
FullyConnection ITG 1.22
MatMul OF 1.10
GeLU EA 1.06

[In MobileNetV3 inference, Our operator optimizations perform well with speedups of 1.06-4.31x.]

More cases can be found in the paper.

Outline

M Evaluation

mlsEsBinfles

Evaluation on End-to-End Optimization

Device: Ascend 910 (Training); Ascend 310 (Inference)
Workloads: 100B PanGu-a (Training); MobileNetV3 (Inference)

B CB XN IP BH= IC
ZZ1 MB I M ZzZ Compute I Others
100% ~ 100 7
o N ’ 7
g 75% A \ @ / 7 E
[} % A -2.5
° before aft'er beflore aft'er ° beflore aft'er beflore aft'er 00
PanGu-a MobileNetV3 PanGu-a MobileNetV3
Bottleneck cause Execution time
| Training The ratl? eojulgesgft])‘;c;?ng;)J.rallellsm The iteration time speedup is 2.04x.)
f The ratio of insufficient parallelism : :)
Inference reduced by 11.61%. The total time speedup is 1.21x.)

Overall Optimization Results

Type Model Parameter Dataset #NPUs
MobileNetV3(M3) 5.4M
Vision Resé;l;tSO 2856?\1/\1/1 ImageNet2012 8
VGG16 138.4M
NLP (1}3;?2 ;;gﬁ WikiText2 8
DeepFM 16.5M
Recommendation | Wide and Deep(W&D) 75.84M Criteo 8
DLRM 540M
LIM Llama 2 7B WikiText2 8
PanGu-a 100B 1.1TB Chinese Dataset 128

[Our optimizations cover 11 different models. }

[EFR Iteration Time
Q. EXT Computation Time
=) 2 -
©
()]
Q
o @ E @
m 1 -ﬁ l ; ﬁ .-ﬁ-] |

X G?{L \\\e{)‘o 6’\.6 NI\ §|\3 Q(&’\ \’9&1\ \\\\&O

Computation time speedups range from 1.08-2.7 x.

Iteration time speedups range from 1.07-2.15x.

Outline

&P Conclusion

mlsEsBinfles

Conclusion

1. We propose a component-based roofline model and underutilization analysis to identify
the operator bottlenecks on Ascend.

2. Through in-depth operator optimization case studies, we guide users on how to
complete optimization.

3. Based on extensive practical optimization experiments, we share our practical insights
and valuable experiences.

Future Work

1. The component-based roofline model can extend to other DSAs like TPU.

2. Depth studies of hardware architecture, especially its interaction with the software.

Thanks

milisfsBnlies

mailto:wzbwangzhibin@gmail.com

	默认节
	幻灯片 1: Squeezing Operator Performance Potential for the Ascend Architecture
	幻灯片 2: Outline
	幻灯片 3: Outline
	幻灯片 4: AI Domain-Specific Architecture (DSA)
	幻灯片 5
	幻灯片 6: Ascend Architecture
	幻灯片 7: Dedicated Compute Units
	幻灯片 8: Customized Memory Architecture
	幻灯片 9: Efficient Transfer Control Units
	幻灯片 10: Instruction Pipeline
	幻灯片 11
	幻灯片 12: Existing Operator Performance Analysis
	幻灯片 13: Limitations of Performance Analysis
	幻灯片 14: Limitations of Performance Analysis
	幻灯片 15: Our Goals
	幻灯片 16: Outline
	幻灯片 17: Overview
	幻灯片 18: Profiling and Component Abstraction
	幻灯片 19: Component-based Roofline Model
	幻灯片 20: Pruning, Visualization and Analysis
	幻灯片 21: Outline
	幻灯片 22: Case Study: Optimization of Add_ReLU Operator
	幻灯片 23: Iteration 1: Reducing spatial dependency
	幻灯片 24: Iteration 2: Minimizing redundant transfer
	幻灯片 25: Optimization Experience
	幻灯片 26: Outline
	幻灯片 27: Evaluation on End-to-End Optimization
	幻灯片 28: Overall Optimization Results
	幻灯片 29: Outline
	幻灯片 30: Conclusion
	幻灯片 31: Thanks

