
Squeezing Operator Performance Potential
for the Ascend Architecture

Yuhang Zhou1, Zhibin Wang1, Guyue Liu2, Shipeng Li1, Xi Lin1, Zibo Wang1, Yongzhong Wang3,

Fuchun Wei3, Jingyi Zhang3, Zhiheng Hu3, Yanlin Liu3, Chunsheng Li3, Ziyang Zhang3,

Yaoyuan Wang3, Bin Zhou4, Wanchun Dou1, Guihai Chen1, Chen Tian1

1 Nanjing University 2 Peking University 3 Huawei Technologies Co., Ltd. 4 Shandong University

Rotterdam, The Netherlands

Outline

Introduction

System Design

Case Study

Evaluation

Conclusion

Outline

Introduction

System Design

Case Study

Evaluation

Conclusion

AI Domain-Specific Architecture (DSA)

4

NVIDIA GPU Huawei Ascend NPUGoogle TPU Cambricon MLU

Domain-specific architecture

Deep learning models

Better arithmetic support

5

Operator Optimization Needs Profiling

What about

Ascend?

6

Ascend Architecture

GPU (NVIDIA) NPU (Ascend)

7

Dedicated Compute Units

7

Computing precision

Cube: INT8/FP16

Vector: INT8/FP16/FP32

Scalar: INT32/FP32/…

~90%

(MatMul, Convolution,

Fully connected）

~10%

(Pooling,

Relu)

99.2%

Transformer computation

8

Customized Memory Architecture

8

Multiple memory buffers1

Cross-level transfers2

Asymmetric bandwidth3

9

Efficient Transfer Control Units

9

Memory transfer engine

MTE-L1

MTE-GM MTE-UB

10

Instruction Pipeline

10

Inter parallelism, intra serialism.

Example of matrix multiplication 𝐴 × 𝐵

Instr
Cache

Scalar

Instr
Dispatch

Cube

Vector

MTE-GM

Instr

MTE-L1

MTE-UB

Instr Queues

11

Summary of Ascend Architecture

Dedicated compute units

Customized memory architecture

Efficient transfer control and

instruction pipeline

Ascend ArchitecturePros

Higher performance ceiling

Operational flexibility

Diverse bottleneck causes

Cons

C
o

m
p

u
tin

g

M
TE

P
ip

e
lin

e

…

Accurately identifying operator bottleneck is a

challenging, but essential task!

12

Existing Operator Performance Analysis

Hierarchical RooflineDRAM Roofline

12

13

Limitations of Performance Analysis

13

(i) Massive combinations between precisions and transfers

180 combinations!

14

Limitations of Performance Analysis

14

Underutilization?

(ii) Incorrect analysis by ignoring the sequential execution

15

Our Goals

15

Simplified and accurate operator performance analysis

Solutions

Complicated analysis

Incorrect analysis

Non-trivial optimization

Problems

Effective guidance for operator optimization

Outline

Introduction

System Design

Case Study

Evaluation

Conclusion

17

Overview

Operator OptimizationSoftware

Application

Framework

Operator

Runtime

Hardware

C
P

U

PCIe

DDR4Ascend

② Modeling

Component bound

UnderutilizationComponent-based
Roofline

③ Underutilization

Utilization

Insufficient
Parallelism

Inefficient
Component

Time_ratio Efficiency

④ Optimization

Impediments

P
P

R
SD A
IS

IT
G

A
IP

Insufficient
Parallelism

Inefficient
Component

M
R
T

O
P

TT EA LC C
T

Component
bound

① Profiling

Compute

MTE T2T1T0

FLOP

Byte

Execution time

……

18

Profiling and Component Abstraction

MTE-GM MTE-UBMTE-L1

Cube Vector Scalar

Compute component

MTE component

Compute

Queue

MTE

Queue
………GM->L1 GM->L0A GM->L0B GM->UB

……… INT8FP16FP32 …
Operations for

the precision

Bytes for

the transfer

Actual execution time of the component

19

Component-based Roofline Model

Utilization of component can
reflect the operator’s bottleneck.

𝑈𝑐𝑢𝑏e =
𝐴𝑐𝑢𝑏𝑒
𝐼𝑐𝑢𝑏𝑒

=
𝑂𝑐𝑢𝑏𝑒

𝑇𝑐𝑢𝑏𝑒 ⋅ 𝐼𝑐𝑢𝑏𝑒
𝑬𝒄𝒖𝒃𝒆

⋅
𝑇𝑐𝑢𝑏𝑒
𝑇𝑡𝑜𝑡𝑎𝑙
𝑹𝒄𝒖𝒃𝒆

Inefficient Component Insufficient Parallelism

Underutilization Analysis

1

2

Profiling

Different precisions?

Operator-aware ideal performance

Harmonic Mean

Arithmetic Power

20

Pruning, Visualization and Analysis

U𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 of Vector+MTE-UB (38.42%):
Underutilization

R𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 of MTE-GM (58.68%):
Insufficient parallelism

Roofline Analysis of Add_ReLU OperatorPruning results

✓ Component abstraction
✓ Remove irrelevant components
✓ Remove impossible combinations

from 180 to 7 !

Outline

Introduction

System Design

Case Study

Evaluation

Conclusion

22

Case Study: Optimization of Add_ReLU Operator

Data flow Instruction timeline

23

Iteration 1: Reducing spatial dependency

MTE-UB bound
(66.24%)

Insufficient parallelism
(38.42%)

24

Iteration 2: Minimizing redundant transfer

MTE-UB bound
(70.52%)

MTE-UB bound
(66.24%)

The single operator time reduced by 1.73×.

The 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡_𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 up by 32.1%.

The total inference latency down by 244.261 μs.

25

Optimization Experience

Bottleneck

Cause

Compute

Bound

MTE

Bound

Insufficient

Parallelism

Inefficient

Compute

Inefficient

MTE

Strategy

More cases can be found in the paper.

Enhanced

Algorithm

Low-precision

Calculation

Computation

Transformation

Minimizing

Redundant

Transfer

Operator

Fusion

Transfer

Transformation

Reducing

Spatial

Dependency

Adjusting

Instruction

Sequence

Ping-pong

Policy

Removing

Unnecessary

Synchronization

Adjusting

Instruction

Parameter

Increasing

Transfer

Granularity

In MobileNetV3 inference, Our operator optimizations perform well with speedups of 1.06-4.31×.

We summarize the common bottleneck causes and optimization strategies.

Outline

Introduction

System Design

Case Study

Evaluation

Conclusion

27

Evaluation on End-to-End Optimization

Device: Ascend 910 (Training); Ascend 310 (Inference)

Workloads: 100B PanGu-α (Training); MobileNetV3 (Inference)

The ratio of insufficient parallelism

reduced by 21.38%.
The iteration time speedup is 2.04x.Training

The ratio of insufficient parallelism

reduced by 11.61%.
The total time speedup is 1.21x.Inference

Bottleneck cause Execution time

28

Overall Optimization Results

Computation time speedups range from 1.08-2.7×.

Iteration time speedups range from 1.07-2.15×.

Our optimizations cover 11 different models.

Outline

Introduction

System Design

Case Study

Evaluation

Conclusion

30

Conclusion

1. We propose a component-based roofline model and underutilization analysis to identify

the operator bottlenecks on Ascend.

2. Through in-depth operator optimization case studies, we guide users on how to

complete optimization.

3. Based on extensive practical optimization experiments, we share our practical insights

and valuable experiences.

1. The component-based roofline model can extend to other DSAs like TPU.

2. Depth studies of hardware architecture, especially its interaction with the software.

Future Work

Thanks

Q&A

yuhangzhou@smail.nju.edu.cn

mailto:wzbwangzhibin@gmail.com

	默认节
	幻灯片 1: Squeezing Operator Performance Potential for the Ascend Architecture
	幻灯片 2: Outline
	幻灯片 3: Outline
	幻灯片 4: AI Domain-Specific Architecture (DSA)
	幻灯片 5
	幻灯片 6: Ascend Architecture
	幻灯片 7: Dedicated Compute Units
	幻灯片 8: Customized Memory Architecture
	幻灯片 9: Efficient Transfer Control Units
	幻灯片 10: Instruction Pipeline
	幻灯片 11
	幻灯片 12: Existing Operator Performance Analysis
	幻灯片 13: Limitations of Performance Analysis
	幻灯片 14: Limitations of Performance Analysis
	幻灯片 15: Our Goals
	幻灯片 16: Outline
	幻灯片 17: Overview
	幻灯片 18: Profiling and Component Abstraction
	幻灯片 19: Component-based Roofline Model
	幻灯片 20: Pruning, Visualization and Analysis
	幻灯片 21: Outline
	幻灯片 22: Case Study: Optimization of Add_ReLU Operator
	幻灯片 23: Iteration 1: Reducing spatial dependency
	幻灯片 24: Iteration 2: Minimizing redundant transfer
	幻灯片 25: Optimization Experience
	幻灯片 26: Outline
	幻灯片 27: Evaluation on End-to-End Optimization
	幻灯片 28: Overall Optimization Results
	幻灯片 29: Outline
	幻灯片 30: Conclusion
	幻灯片 31: Thanks

