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Al Domain-Specific Architecture (DSA)
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Operator Optimization Needs Profiling
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Ascend Architecture
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Dedicated Compute Units
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Customized Memory Architecture
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Efficient Transfer Control Units
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Instruction Pipeline
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Summary of Ascend Architecture

Pros Ascend Architecture Cons

e —_——— e — — — — — —— —

NMNAaAiAAtAA AAarAIitA T aEA

Accurately identifying operator bottleneck is a
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Existing Operator Performance Analysis
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Limitations of Performance Analysis
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Limitations of Performance Analysis
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Our Goals

Problems

[ Complicated analysis

[ Incorrect analysis

[ Non-trivial optimization

Solutions

Simplified and accurate operator performance analysis

)
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Effective guidance for operator optimization
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Profiling and Component Abstraction

Compute component
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Component-based Roofline Model

Operator-aware ideal performance
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Pruning, Visualization and Analysis

Pruning results Roofline Analysis of Add_RelLU Operator
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Case Study: Optimization of Add RelU Operator
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Iteration 1: Reducing spatial dependency
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Iteration 2: Minimizing redundant transfer
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Optimization Experience

We summarize the common bottleneck causes and optimization strategies.

Bottleneck Compute MTE Insufficient | Inefficient | Inefficient
Cause Bound Bound Parallelism Compute MTE
Bottleneck Cause and Optimization Strategy
Operator Compute | MTE | Insufficient | Inefficient | Inefficient | Speedup
Bound | Bound | Parallelism MTE Compute
Add_ReLU MRT RSD 1.72
Depthwise MRT | AIS,RUS,PP ITG 1.26
Strategy AvgPool AIP 4.31
Mul RSD 1.34
Conv2D MRT RSD 2.65
FullyConnection ITG 1.22
MatMul OF 1.10
GeLU EA 1.06

[ In MobileNetV3 inference, Our operator optimizations perform well with speedups of 1.06-4.31x. ]

More cases can be found in the paper.
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Evaluation on End-to-End Optimization

Device: Ascend 910 (Training); Ascend 310 (Inference)
Workloads: 100B PanGu-a (Training); MobileNetV3 (Inference)
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Overall Optimization Results

Type Model Parameter Dataset #NPUs
MobileNetV3(M3) 5.4M
Vision Resé;l;tSO 2856?\1/\1/1 ImageNet2012 8
VGG16 138.4M
NLP (1}3;?2 ;;gﬁ WikiText2 8
DeepFM 16.5M
Recommendation | Wide and Deep(W&D) 75.84M Criteo 8
DLRM 540M
LIM Llama 2 7B WikiText2 8
PanGu-a 100B 1.1TB Chinese Dataset 128

[ Our optimizations cover 11 different models. }
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Computation time speedups range from 1.08-2.7 x.

Iteration time speedups range from 1.07-2.15x.
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Conclusion

1. We propose a component-based roofline model and underutilization analysis to identify
the operator bottlenecks on Ascend.

2. Through in-depth operator optimization case studies, we guide users on how to
complete optimization.

3. Based on extensive practical optimization experiments, we share our practical insights
and valuable experiences.

Future Work

1. The component-based roofline model can extend to other DSAs like TPU.

2. Depth studies of hardware architecture, especially its interaction with the software.



Thanks

milisfsBnlies



mailto:wzbwangzhibin@gmail.com

	默认节
	幻灯片 1: Squeezing Operator Performance Potential for the Ascend Architecture
	幻灯片 2: Outline
	幻灯片 3: Outline
	幻灯片 4: AI Domain-Specific Architecture (DSA)
	幻灯片 5
	幻灯片 6: Ascend Architecture
	幻灯片 7: Dedicated Compute Units
	幻灯片 8: Customized Memory Architecture
	幻灯片 9: Efficient Transfer Control Units
	幻灯片 10: Instruction Pipeline
	幻灯片 11
	幻灯片 12: Existing Operator Performance Analysis
	幻灯片 13: Limitations of Performance Analysis
	幻灯片 14: Limitations of Performance Analysis
	幻灯片 15: Our Goals
	幻灯片 16: Outline
	幻灯片 17: Overview
	幻灯片 18: Profiling and Component Abstraction
	幻灯片 19: Component-based Roofline Model
	幻灯片 20: Pruning, Visualization and Analysis
	幻灯片 21: Outline
	幻灯片 22: Case Study: Optimization of Add_ReLU Operator
	幻灯片 23: Iteration 1: Reducing spatial dependency
	幻灯片 24: Iteration 2: Minimizing redundant transfer
	幻灯片 25: Optimization Experience
	幻灯片 26: Outline
	幻灯片 27: Evaluation on End-to-End Optimization
	幻灯片 28: Overall Optimization Results
	幻灯片 29: Outline
	幻灯片 30: Conclusion
	幻灯片 31: Thanks


