é:usenlx

' COMPUTING SYSTEMS
ASSOCIATION

Accelerating Model Training on Ascend Chips: An
Industrial System for Profiling, Analysis and Optimization

Yuhang Zhou!, Zibo Wang!, Zhibin Wang!, Ruyi Zhang!, Chen Tian!, Xiaoliang Wang!, Wanchun Dou!, Guihai Chen!,
Binggiang Wang?, Yonghong Tian?, Yan Zhang?, Hui Wang?, Fuchun Wei?, Boquan Sun?, Jingyi Zhang?,
Bin She3, Teng Su?, Yifan Yao?, Chunsheng Li?, Ziyang Zhang?, Yaoyuan Wang?, Bin Zhou*, Guyue Liu’

I Nanjing University ? Peng Cheng Laboratory 3 Huawei #Shandong University > Peking University

HAS 3k S 56 == \"’

PENG CHENG LABORATORY
H UAWEI

minEeBiaE

%% Introduction
? Insights

Outline @ System Design

M Case Study
@ Conclusion

mllsEsBinfies

%% Introduction

Outline

mlnEsBinfles

Different Roles in Model Training

/~ Optimization library

- S _—y - - - —y
O / Parallel > / 1/0 -~

Developer / :____:\ :____:\

/ Computation J / Communication J
\ - = ™ ~ o /

Model Hardware

Deployer ?) % [a]
|

Maintainer g_&* \ { Running J

Developer

/ L ——

Optimization library

—_—

-

—

- Parallel
P raraliel
/ DP/PP/TP/SP
\ N Auto Parallel: Alpa, ...
= -
N e o = -
- -
- Computation
f Operator fusion: T3, ...

-

-

~

-

—~
~y

\ Memory management: GMLake, ...

\\
~
~

Compiler:

“—————

Cocktailer, ...

-

-
-

S
\
]

7’

- - =~
- 1o ~.
[CPU processing: Pecan, ... \
\ Cache strategy: UGACHE, ... /
~ . Data prefetch: Fastensor, ... o
~ - o - -
p— S
~ =~ ~ Communication B
7
{ Scheduler: Syndicate, ... \
\ Topology: TopoOpt, ... !
N - Collectives: TCCL, ... ,//
e - -

Identify bottlenecks and develop optimizations

Deployer

Hardware

v

Worker 0 [Tokenol— % Bl {/image ™} ‘e Text o *. .
= N il i N 7 Al)
i ¥ : i Text Heet S N s S |
H ia =i i . XY L
woker 1 [Fotenz}”; P E Nou :) e (. L Y ' == - = ~
Token 3 j Token 4 ¢ } | &= ey L Lt || . L
g 3 v {il} i} weu < e [el e
g} i 2 @ ty {54 =t G) . N
worer2 [ena}f £ (N Ewerr)/ 2 NJous 1@ o Comector | Generor (£) L L L =
Token § IR nvercn [i i P =t
| 9 p, p,
K MoE Multimodal / K Single node vs Multi nod /

Select optimization for varying models and hardware

Maintainer

Random and unpredictable
performance fluctuations

= Restart from checkpoint

1 ee— Performance fluctuation

D T T T T
ﬁ 25451 25551 25651 25751
Step ID

Real-time monitoring to capture performance fluctuations

Different Roles in Model Training

/" Optimization library Goals
- Lo —-—
O ¢ paate 7 o
Developer Se__=-7~s____."7 :> Bottleneck
/ ro TN TS identification
Computation , ¢ Communication ,

Model Hardware sivati

4 Optimization

Deployer &) L % H 10} J:> selection
t

|

_ _ . Real-time
- .
Maintainer .__a \ { Running J :D monitor

Limitations
Profiling Analysis Optimization

Bottleneck

identification Fine-grained Comprehensive

ili analysis L
Optimization SIETE y Optimization
selection guidance
Real-time Continuous
monitor profiling
Limitati High profiling Partial bottleneck Limited
imitations overhead analysis optimization scope

Different Roles in Model Training

-

QO _[l«

Developer /

-

‘—_’

—_~

~

-_— e ==

-

—-——

/ Computation J / Communicatio

Optimization library
Parallel , / /0
. o

,’:>

~
ny

Goals

Bottleneck
identification

Problems

Deployer é)@) {

7

K\~—_’

\~——’/

Model

=

Hardware
| ‘ {o} J:>

l

Partial bottleneck
analysis

Optimization
selection

Limited
optimization scope

Maintainer g__a" \ {

Running

|=

Real-time
monitor

High profiling
overhead

@ Insights

Outline

mlnEsBinfles

Comparison of NPU and GPU

NLP Vision

Recommend Multimodal

PyTorch

MindSpore

TensorFlow

Comm algorithm

Comm collective

Operator library Compiler Runtime
T T
DRAM| CPU | | | s,
Sl =1
I
OOO : ROCE : AICPU
000 | | Ascend

Application
Framework
Communication

Platform

Hardware

~

\

Same hierarchical training paradigm

N

J

7

Hardware-agnostic bottleneck

N\

Cuda || Tensor ALU ALU

Core Core

ALU ALU || ALU

ALU || ALU || ALU || ALU

AlCore

—I 1
AICPU m Cube | =2
Scalar

Shared Memory/L1 Cache

Cache/Buffer

HBM

HBM

GPU

NPU

Differences in chip architecture

Hardware-specific bottleneck

Insights

Training process

i — o —— —— —— —— — —— —— —— — —— — — — —— — —— — — — — — — — ——————— —————— ————

// \\
/ \
\
/ Parallel strategy \
I
| |
: PyTorch MindSpore TensorFlow Framework :
I
| |
I I
: |
i Data preparation Operator dispatch Operator computation Data communication i
I I
’ :
| DRAM| CPU CPU PCle |
| 000 000 |
' 00O 000 HCCS |
\ 000 000 ROCE !
000 000 NPU

Insights

Training process

e —_————_—_———————— —— —

// (\\
/ Parallel N
/ bottleneck \
\
, |
|
: PyTorch MindSpore TensorFlow Framework :
|
| |
| |
| |
| 1O CPU Computation Communication |
: bottleneck bottleneck bottleneck bottleneck l
| |
|
| DRAM| CPU CPU . PCle |
| 000 000 |
: 888 888 -AICPU HCCS :
\ RoCE !
000 Q00 NPU

Insights

Training process

T e D D R D R e e e e e e e e e R e e e o e o e o e S e

/ (Parallel W AN

Hierarchical bottleneck analysis is feasible!

i k N\ LLINV T INVOUVUIIN) k N\ LLINV T INOUVUIEN) k N\J LLINV T INVOUVUIIN) k N\ LLIN T INVOUVUIIN) i
| |
| |
| DRAM| CPU CPU L PCle |
| 000 000 |
= e 33 el
\ RoCE /
000 000 NPU

Outline @ System Design

mllsEsBinfies

Hermes System Design

/ @ rrofiling \ / @) Analysis \ / € Optimization \

Lightweight Parallel
Monitor > Inter-op Cause-optimization match
l CPA Bottleneck Cause Optimization
omt r . l

) Timeline o R 1/O Slow data Cache _»m
) \ / fetching strategy

Device I:> O
/ (R X CPU
1 Operator — Intra-op

Network ‘ ’ Comp

\ Fine-grained Profiling/ k Comm / \

Hermes System Design

/ @ rrofiling \

Lightweight
Monitor

'

Host

Device |:>
Y (

Operator

Timeline

Network

\ Fine-grained Profiling/

Coarse-to-fine profiling

Coarse-to-fine Profiling

. . Y Y Y
Lightweight »| Step Time . Slow R Slow
. Step? Rank?
Monitor 3
N N | |
Monitor Process Profiling Request
Node B Host i
| Rank 0 | - | Rank 7 | i o vtorch NN | e - -
) ¥ Y ytore | Parsing |
r b e - - ! | N |
i ed _Shared memory] Device : Timeline :
me-g?me r : @ | Computing Memory Access E|:>| ~ |
Profiling _Monitor process] ' |__Performance Performance) | 1 (N !
1@ I | | Operator | !
Network ! I\ J :
| 1 N
O 4,|CProfiling | @ : !
/A config i PCle HCCS RDMA E
Dynamic profiling Efficient parsing

Hermes System Design

/ @) Analysis \

Parallel

Inter-op

CPA

|
T /0

‘ CPU
- Intra-op

Comp

&=

Hierarchical bottleneck analysis

Inter-operator Analysis

Inter-op ® Multi-component Parallel Analysis
| Parallel Analysis] e Overlap, non-overlap computation/communication/host, free time.
\ ! ’ e Critical Path Analysis
| tieel el AmeiEs | e The bottleneck operators with most execution time on the critical path.

| |
Host! | Host2 | | Host3 ' | Host4 !
| " I Lo
i Comp1 Comp?2 i i Comp3 : Comp4
! ! P I
i Comm 1 i Comm 2 Comm3 || Comm 4 I
———__ ’|’ 1
@ Free time
| [|
Host1 | Host3 b !
I | e : | > | :
l wal path T Comp3 ! Comp4
o | _—
! Comm 1 ! i | Comm4 E
Computation Communication Host

1/O Analysis
® Queue-based I/O Analysis

Data preparation

Storage CPU PCle . GPU

@ Data Queue J[CJE Host Queue E Device Queue !
| LLLLL | l :, l
Reading Processing Fetching . Training

}

Intra-op

- A

Device Queue
Size >0

[I/O Analysis J

Data fetching

Data processing

CPU Analysis
e CPU Bottleneck Causes

| CPU A NPU
7\ AlBlc|D
| B C >
NN Dispatch l
| D Compilation Execution
Intra-op |

CPU
bottleneck

[CPU Analysis]

External interference

[—] /0\0

L] (o)
w] @

! Garage Performance Environment
collection monitor configuration

Computation Analysis

e Computation Bottleneck

e Different compute units (AICPU, AlCore Cube/Vector)
e Roofline model analysis (arithmetic, memory)

}

Intra-op : [AICPU]——»[Eliminate or replace]

w A
o
S Ridge Point (Al)
- idge Point (Al ccessary
NPU [Vector <)
Q Compute Bound
Roofline model] s | LT T
g Plhreshold
o
: €
[Comp AnalySIS] [Cube e Underutilization
>
Arithmetic Intensity (FLOPs/Byte)

Communication Analysis

® Synchronization + Transmission

[Comm Analysis]

i Computation Transmission Wait i Sync
i Device 0 _l_ (3 Synchronization
| Device 1 \\» analysis
i . ' ' ' 2\ Transmission

l | Device 2 @ analysis

Intra-op Device 3 B

[Synchronization] [Transmission J
| Slow Slow CPU Bandwidth Bandwidth
| computation scheduling limit underutilization

Detailed causes can be found in the paper.

Hermes System Design

/ € Optimization

Cause-optimization match

Bottleneck Cause Optimization

/0 Slow data Cache m
ﬁ
fetching strategy

_

Experience-guided optimization

Bottleneck Cause-Optimization Match

Bottleneck Cause Optimization Ratio
Parallel Poor Parallelism Auto hybrid parallel [67] / Multi-shard parallel 5.2%
Slow Data Reading Increase IO bandwidth / Remote to local storage
Improve CPU parallelism (num_workers)
/O Slow Data Processing Avoid compression formats (zip, tar) 8.9%
Cancel the taskset process binding [33]
Slow Data Fetching Cache strategy (pin_memory, data prefetcher) [24,66]
Operator Complication Replace dynamic shape operators / Disable JIT compilation
Operator Dispatch Operator fusion [43,68] / Eliminate synchronization operations
CPU Garbage Collection Disable gc / Increase gc threshold 37.0%
CPU Resources Contention Disable other CPU process
Environment Configuration Align software versions / Reduce logging level
Compute Bound Avoid decreasing computing frequency / [solate slow nodes
Memory Bound Operator fusion [43,68] / Quantization [38,56,63] / ZeRO [51,52]
Computation Eliminate AICPU operators 31.9%
Underutilization Replace operators with affinity APIs)
Forbid private format
Bandwidth Contention Avoid bandwidth contention by re-scheduling operators
RDMA Retransmission Adjust RDMA network configurations of switch and server
Communication Small Packet Increase batch size / Gradient fusion [26,46] / Operator fusion 17.0%

Byte Alignment

Align HCCS data size

Network Configuration

HCCL environment variables / Switch congestion control / UDP hashing collision

-

CPU and
computation
bottlenecks

dominate.

Lessons

CPU — CPU scheduling bottlenecks dominate but are often overlooked.
Computation > Underutilization dominates computation bottlenecks.
. Contention between computation and communication.]
[Communication
Port flapping and link failures dominate network issues.]
[1O] ﬁ{ Minimize remote access to alleviate 1/0O bottlenecks.]

Outline

M Case Study

mlnEsBinfles

Iterative Optimization Development for PanGu-a

Device: 128 Ascend 910A
Workloads: 100B PanGu-a model training

)

Hierarchical

Bottleneck
|dentification

Overlap

Auto Hybrid

Parallelism

Multi-shard

__Parallelism

-~

[Sub-optimal)

N

[Gradient)

| Granularity |

Fusion

lteration 2

lteration 3

B Computation R MP Comm
EES Host B Crad Comm
B 0g.01
B/O
BfO/A

B/O/A/M
B/O/A/M/G

26.43

0 0 a0 &0 a0
Time(z)

Step time.

100

3 /2856

%)

O

~v D \
AT
g0~

O+
BY

oY

Overall training time.

The optimization of large model training often requires multiple iterations.

After three iterations of optimization, the total time speedup is 3.05x.

Deployment Optimization Experience

We summarize the speedups from optimization in different model deployments.

Optimization Speedup (-: not optimizable)

Type Model Parameter 70 | CPU | Para. | Compu. | Comm. | Total # of NPUs Dataset
ResNet50 25.6M 5.03 - - 1.02 1.04 5.34
» VGGI6 1384M | - 5 i [.08 135 | 1.46 8 [mageNet2012
Vision 137 | - i i .37 I
MobileNetV 1-SSD 4.2M 03 T 191 - - - 307 g VOC2012
Bert-Large 330M - - - 1.63 1.38 2.49
NLP PanGu-« 1.3B - - - 1.18 1.02 1.20 8 Wiki
GPT3-13B 13B - - 1.08 - - 1.08
DeepFM 16.5M - - - - 1.08 1.08 .
Recommend DIRM SI0M - - - - 17 77 8 Criteo

{Our optimizations bring training speedups from 1.08-5.34x in vision, NLP, and recommendation models.]

Detailed cases can be found in the paper.

Performance Fluctuation Optimization

9k-card MoE model training

a 70
=hed
£ %o
2 30
5 20
g 101 Restart from checkpoint 3 104 Restart from checkpoint
E 0 Performance fluctuation £ ol . . .
= YSsas1 25551 25651 25751 = 27451 27551 27651 27751
Step ID Step ID
(a) Performance before optimization. (b) Performance after optimization.

(1) Increase Python garbage collection threshold. Training time speedup is 1.06x.

(2) Active garbage collection when saving checkpoints. Average throughput speedup is 1.05x.

Outline

&P Conclusion

mlnEsBinfles

Conclusion

1. We propose Hermes, a systematic training optimization system with lightweight profiling,
hierarchical analysis, and automated optimization guidance.

2. We summarize insights from 135 real-world cases and demonstrate Hermes’s effectiveness
through extensive case studies.

Future Work

1. Expand Hermes to support emerging model training technologies like reinforce learning.
2. Improve Hermes’s ability to handle more complex bottlenecks and situations.

3. Integrate training logs and even LLM-based agents to more accurate bottleneck analysis.

mllsEsBinfies

mailto:wzbwangzhibin@gmail.com
mailto:wzbwangzhibin@gmail.com

	默认节
	Slide 1: Accelerating Model Training on Ascend Chips: An Industrial System for Profiling, Analysis and Optimization
	Slide 2: Outline
	Slide 3: Outline
	Slide 4: Different Roles in Model Training
	Slide 5
	Slide 6
	Slide 7
	Slide 8: Different Roles in Model Training
	Slide 9: Limitations
	Slide 10: Different Roles in Model Training
	Slide 11: Outline
	Slide 12: Comparison of NPU and GPU
	Slide 13
	Slide 14
	Slide 15
	Slide 16: Outline
	Slide 17
	Slide 18
	Slide 19: Coarse-to-fine Profiling
	Slide 20: Hermes System Design
	Slide 21: Inter-operator Analysis
	Slide 22: I/O Analysis
	Slide 23: CPU Analysis
	Slide 24: Computation Analysis
	Slide 25: Communication Analysis
	Slide 26: Hermes System Design
	Slide 27: Bottleneck Cause-Optimization Match
	Slide 28: Lessons
	Slide 29: Outline
	Slide 30: Iterative Optimization Development for PanGu-α
	Slide 31: Deployment Optimization Experience
	Slide 32: Performance Fluctuation Optimization
	Slide 33: Outline
	Slide 34: Conclusion
	Slide 35: Thanks

