

Accelerating Model Training on Ascend Chips: An Industrial System for Profiling, Analysis and Optimization

Yuhang Zhou¹, Zibo Wang¹, Zhibin Wang¹, Ruyi Zhang¹, Chen Tian¹, Xiaoliang Wang¹, Wanchun Dou¹, Guihai Chen¹,
Bingqiang Wang², Yonghong Tian², Yan Zhang², Hui Wang², Fuchun Wei³, Boquan Sun³, Jingyi Zhang³,
Bin She³, Teng Su³, Yifan Yao³, Chunsheng Li³, Ziyang Zhang³, Yaoyuan Wang³, Bin Zhou⁴, Guyue Liu⁵

¹ Nanjing University ² Peng Cheng Laboratory ³ Huawei ⁴ Shandong University ⁵ Peking University



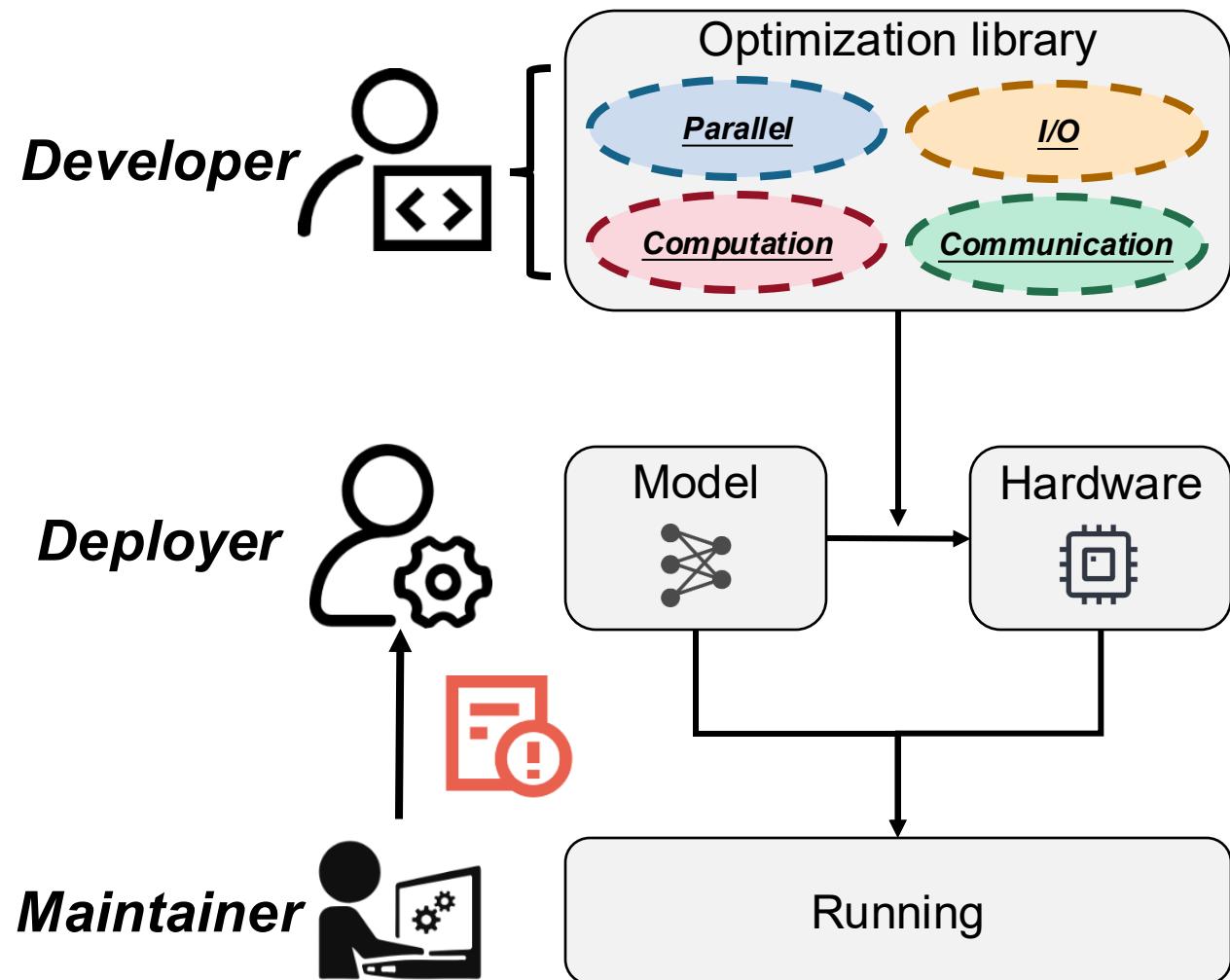
Outline

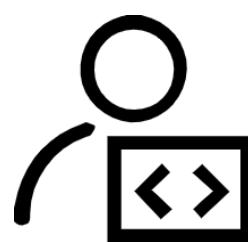
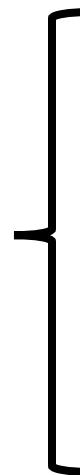
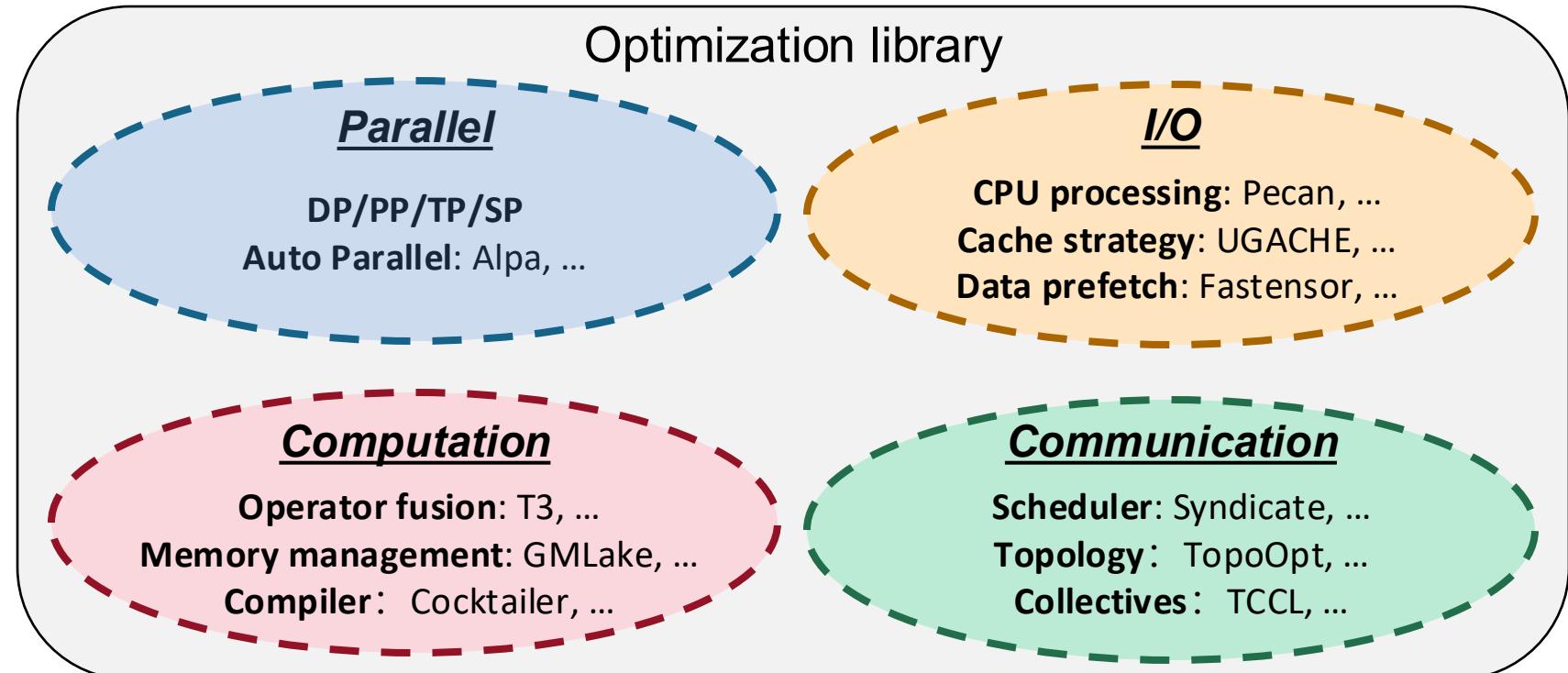
- Introduction
- Insights
- System Design
- Case Study
- Conclusion

Outline

- Introduction**
- Insights**
- System Design**
- Case Study**
- Conclusion**

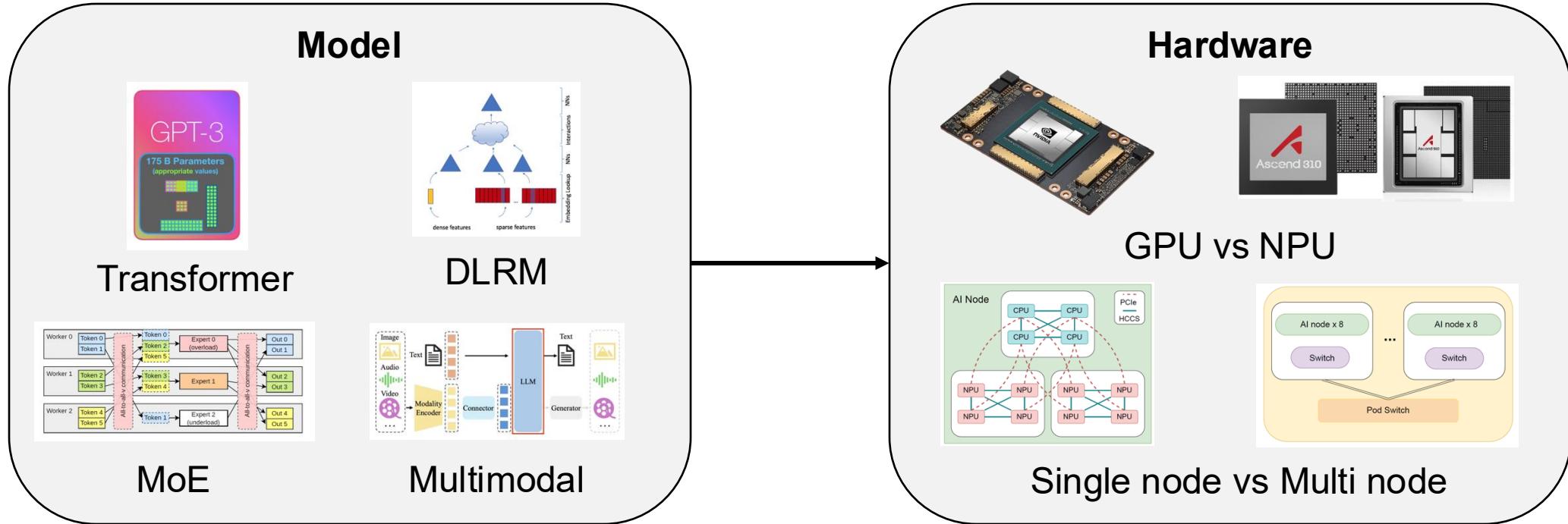
Different Roles in Model Training





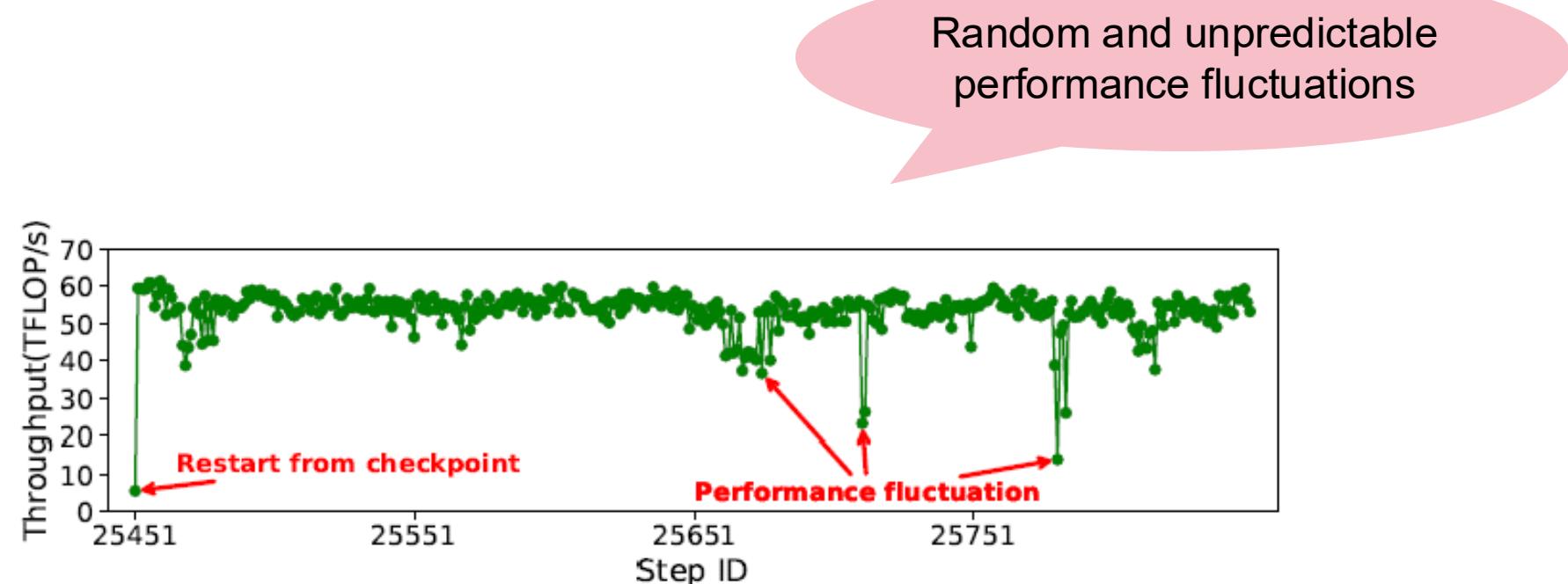
Identify bottlenecks and develop optimizations

Deployer



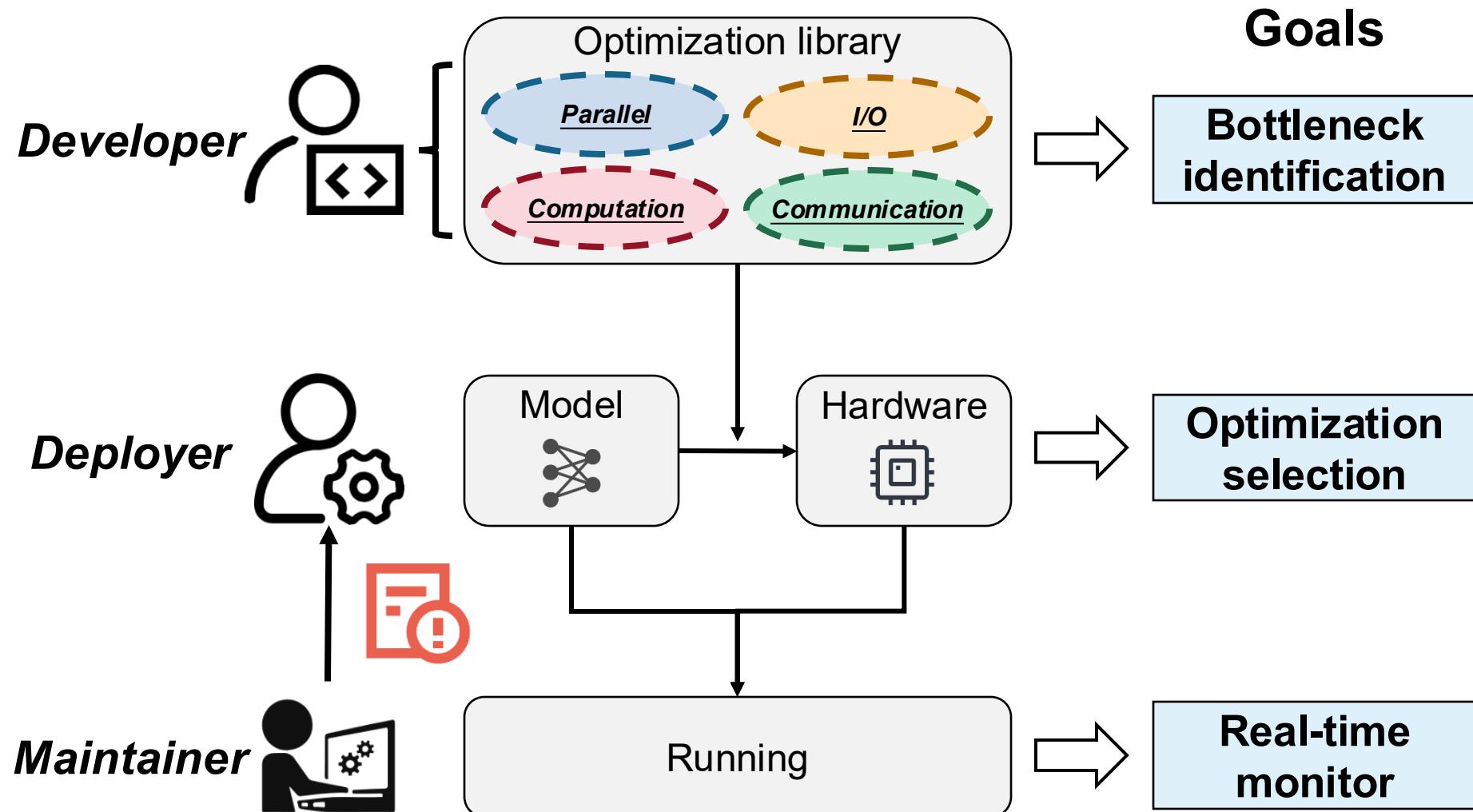
Select optimization for varying models and hardware

Maintainer



Real-time monitoring to capture performance fluctuations

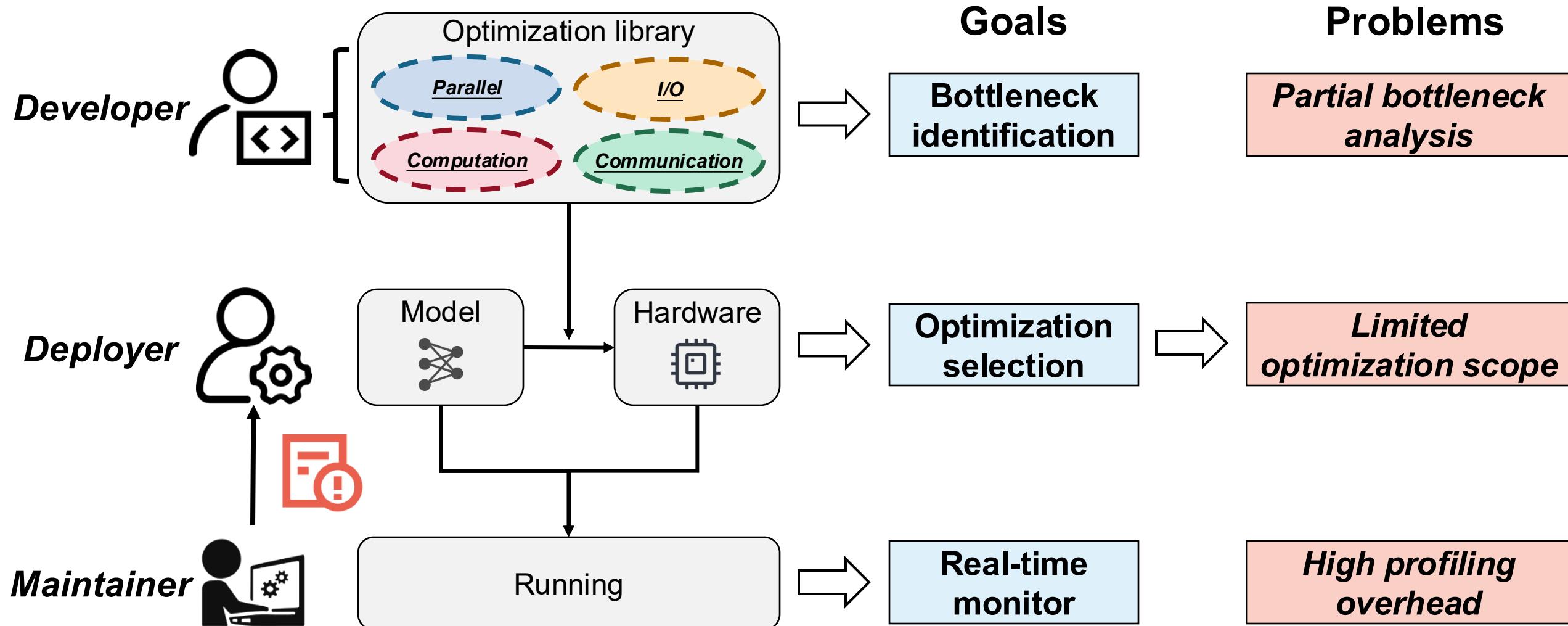
Different Roles in Model Training



Limitations

	Profiling	Analysis	Optimization
Bottleneck identification			
Optimization selection	Fine-grained profiling	Comprehensive analysis	Optimization guidance
Real-time monitor	Continuous profiling		
Limitations	<i>High profiling overhead</i>	<i>Partial bottleneck analysis</i>	<i>Limited optimization scope</i>

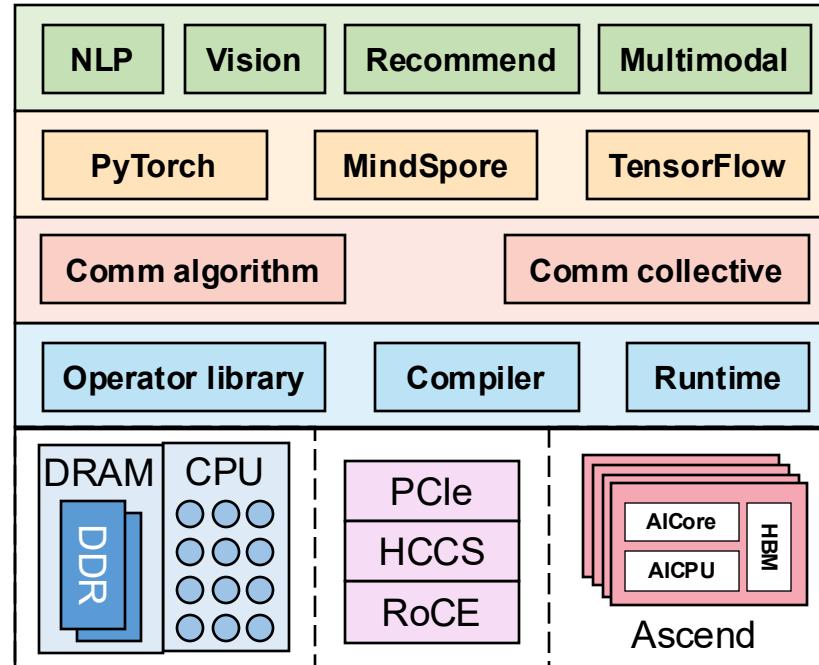
Different Roles in Model Training



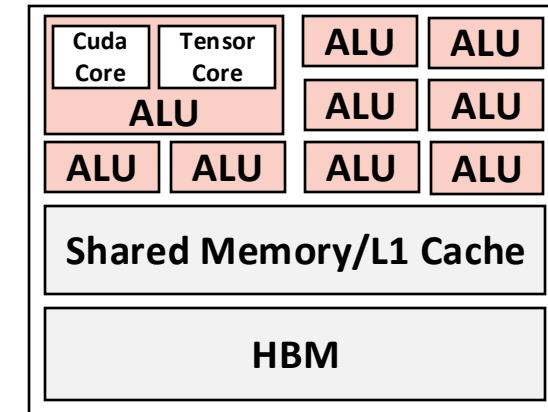
Outline

- Introduction
- Insights
- System Design
- Case Study
- Conclusion

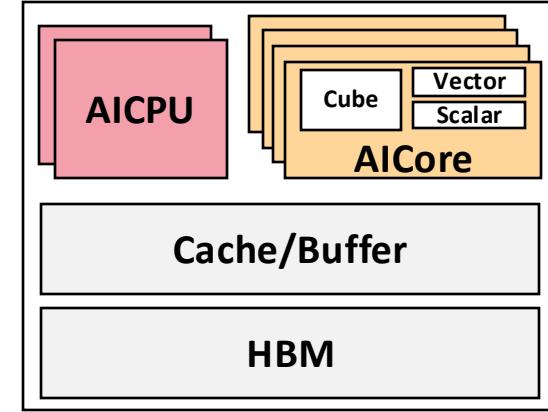
Comparison of NPU and GPU



Application
Framework
Communication
Platform
Hardware



GPU



NPU

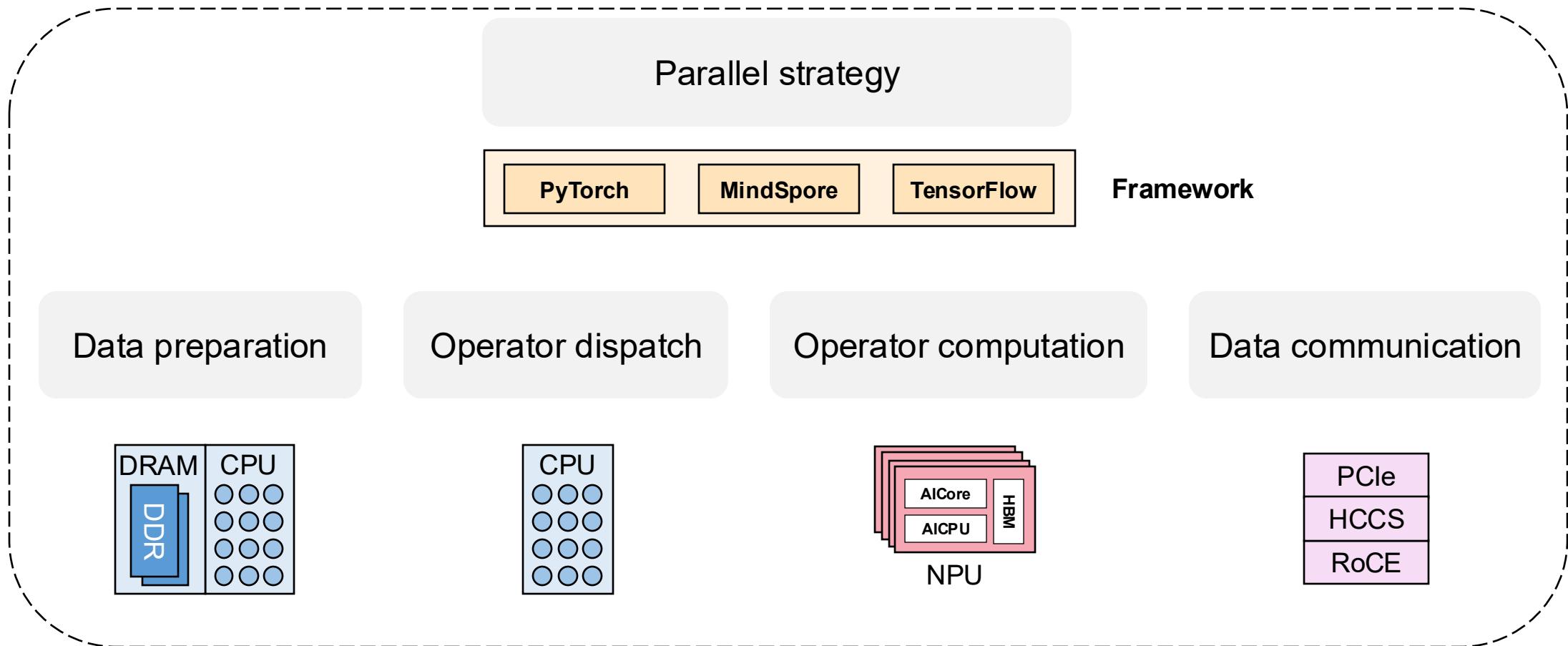
Same hierarchical training paradigm

Differences in chip architecture

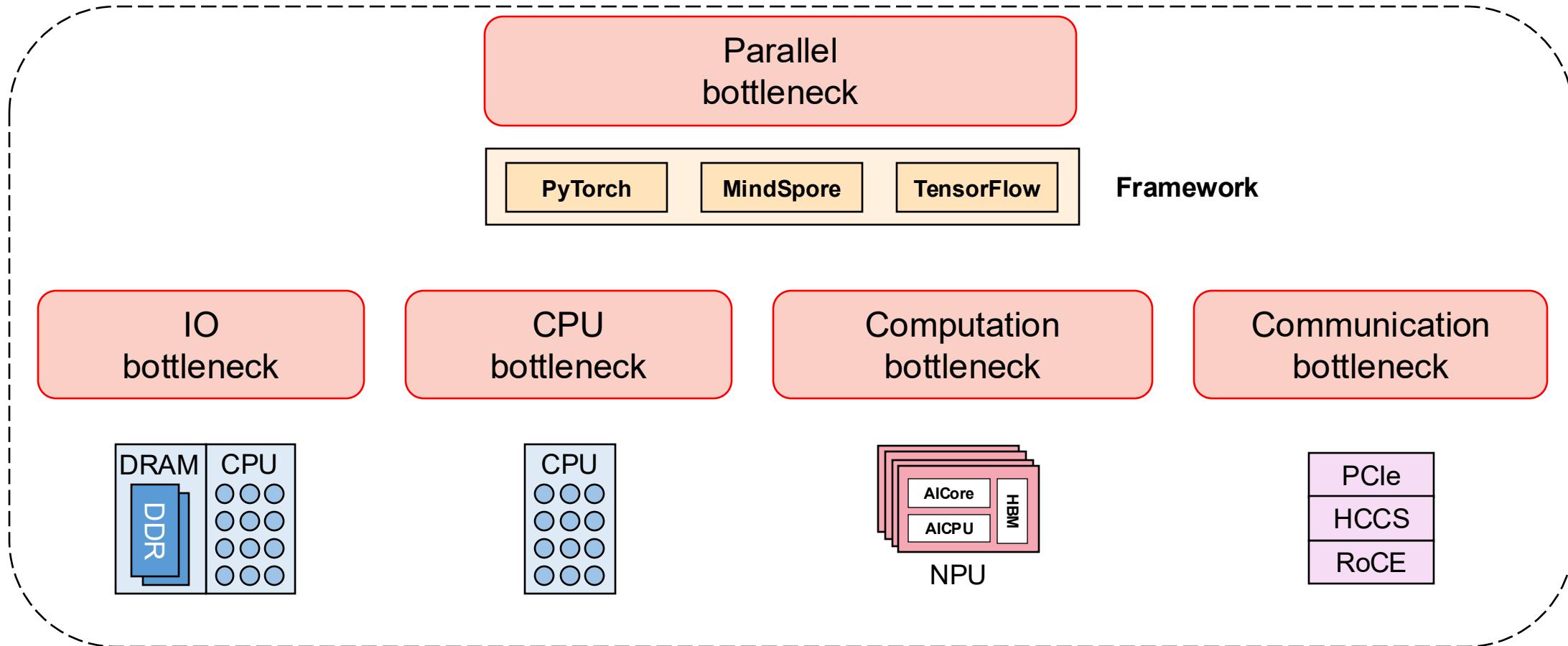
Hardware-agnostic bottleneck

Hardware-specific bottleneck

Training process



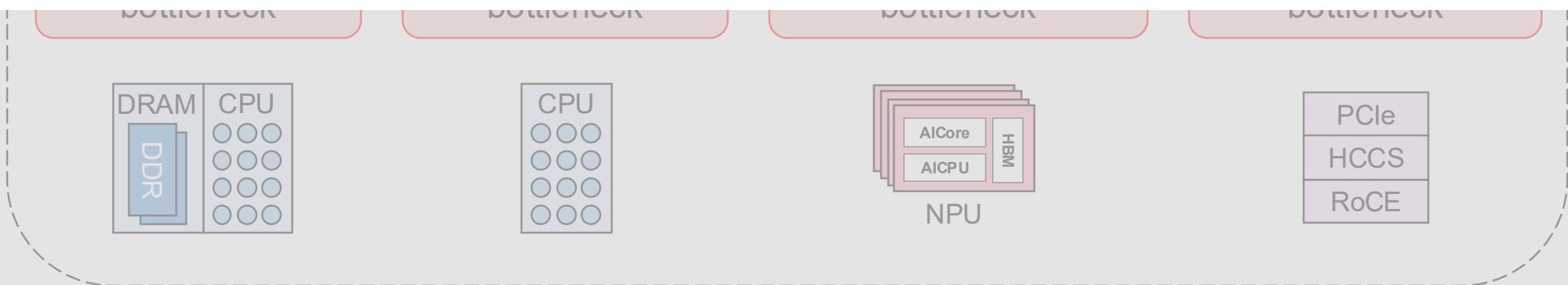
Training process



Training process

Parallel

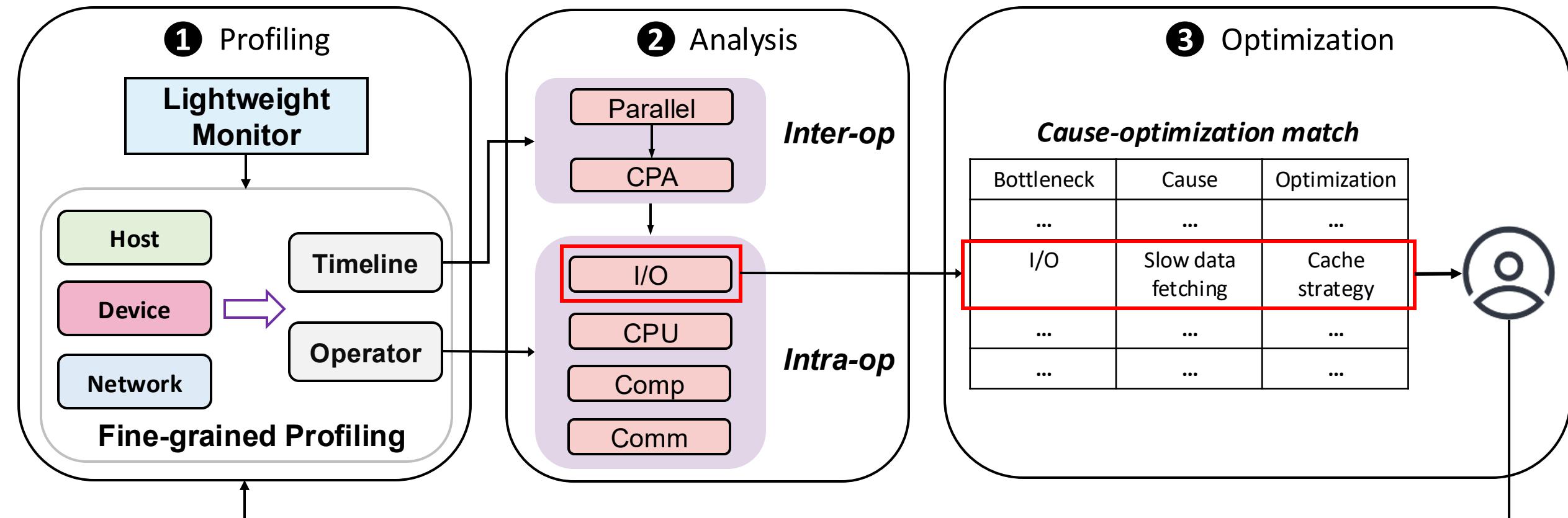
Hierarchical bottleneck analysis is feasible!



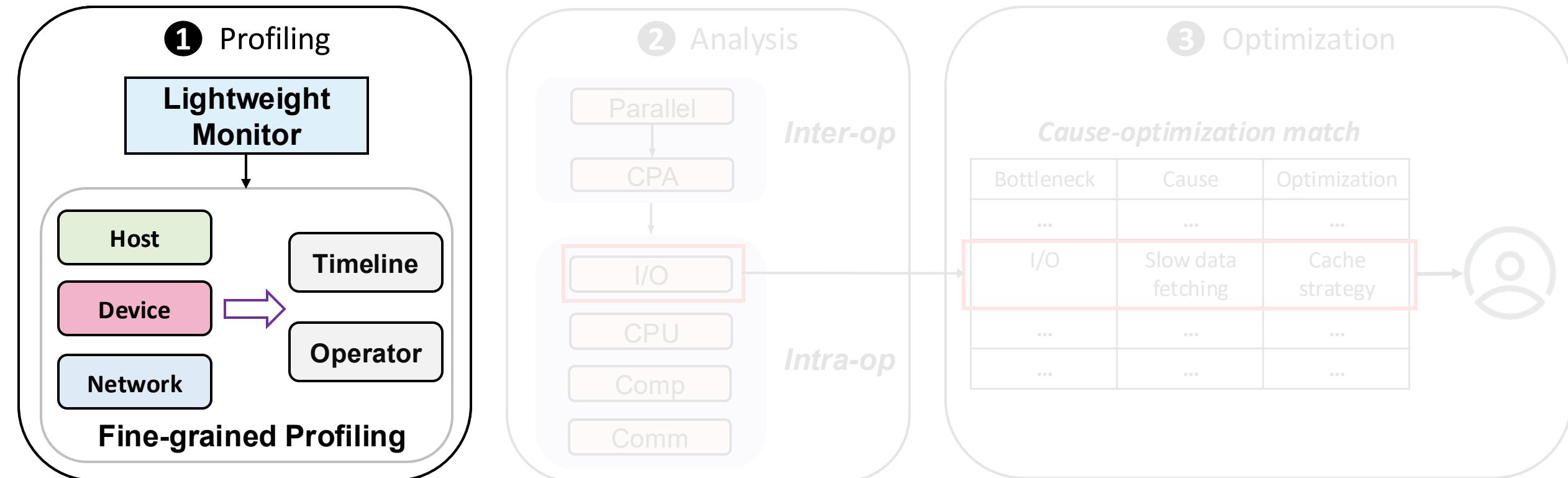
Outline

- Introduction
- Insights
- System Design
- Case Study
- Conclusion

Hermes System Design



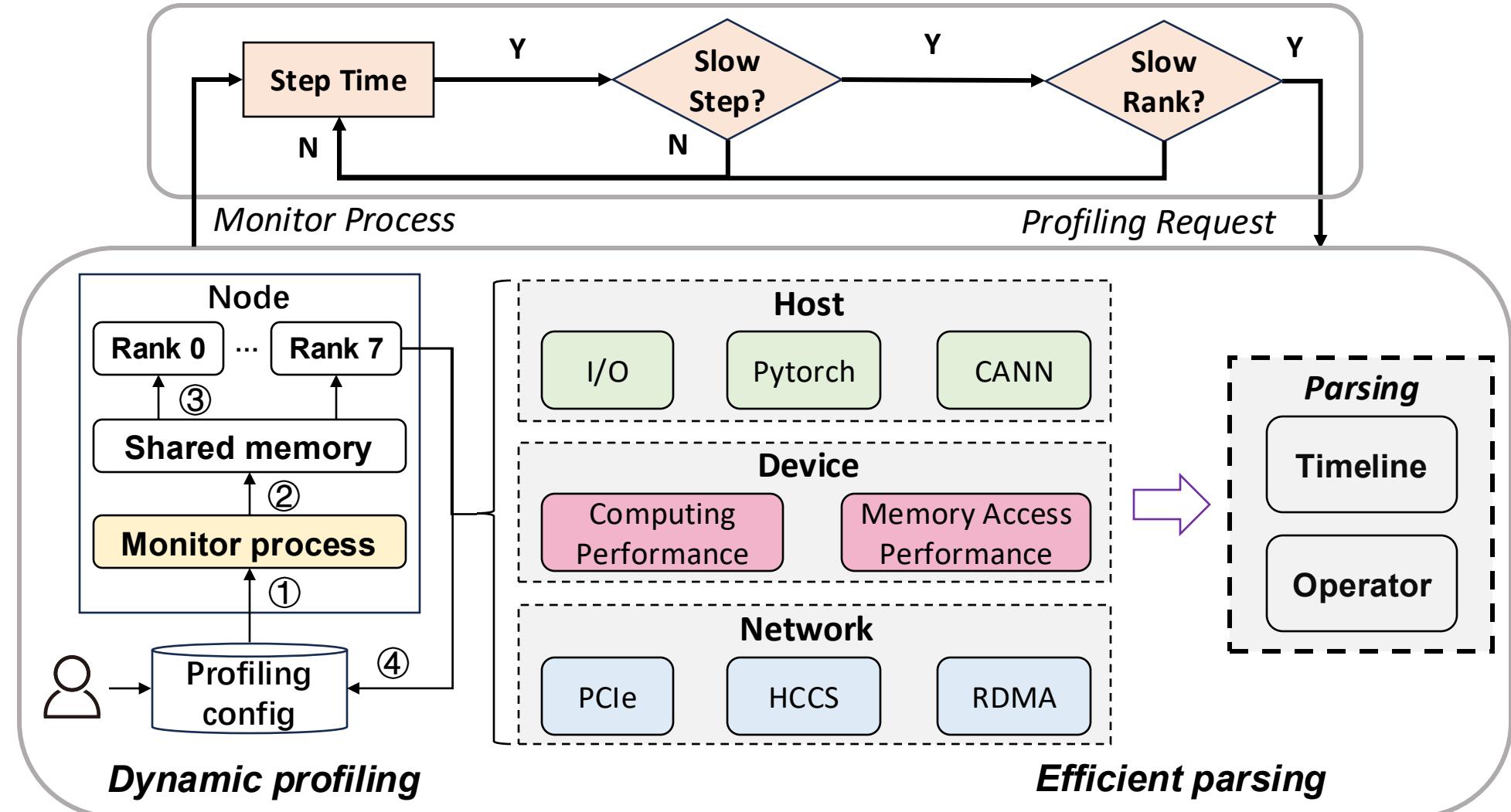
Hermes System Design



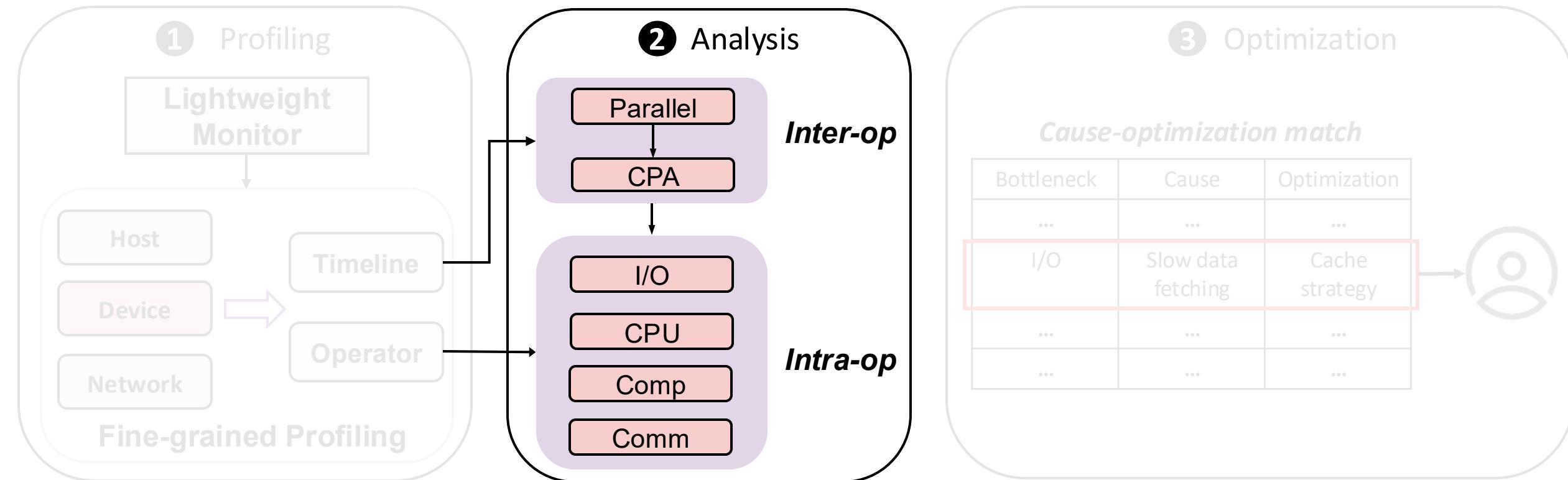
Coarse-to-fine profiling

Coarse-to-fine Profiling

Lightweight Monitor



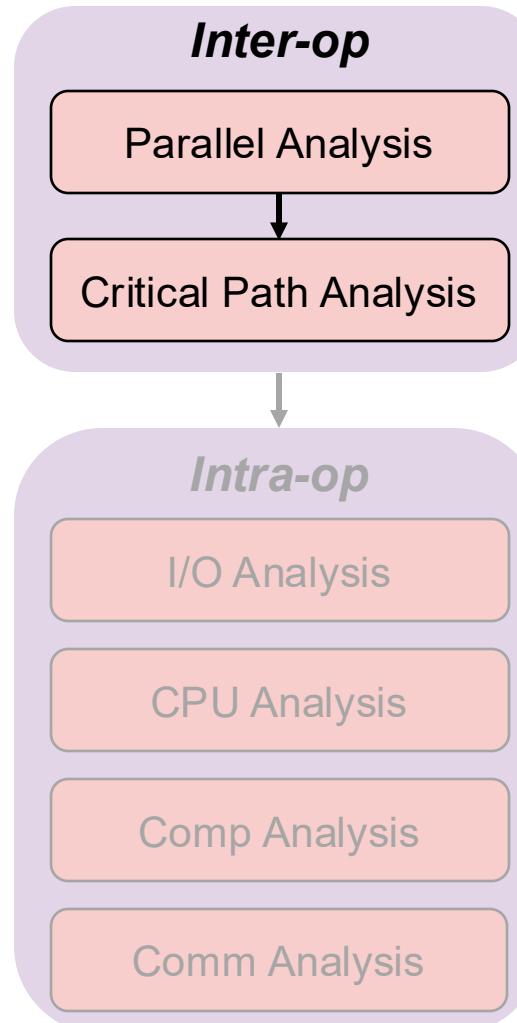
Hermes System Design



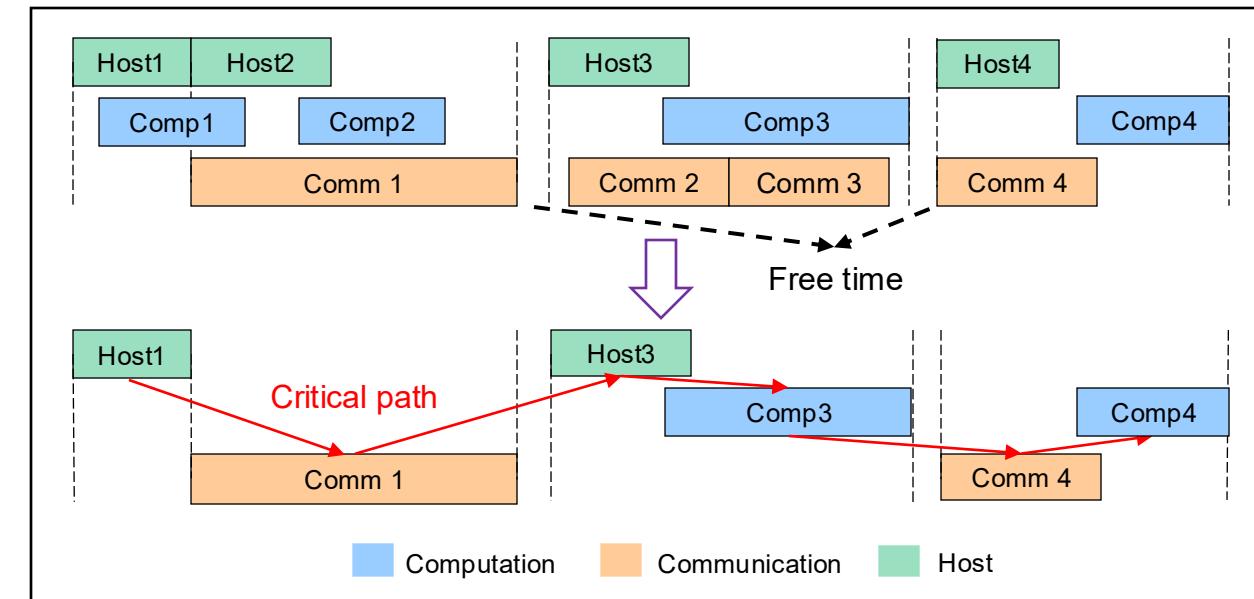
Coarse-to-fine profiling

Hierarchical bottleneck analysis

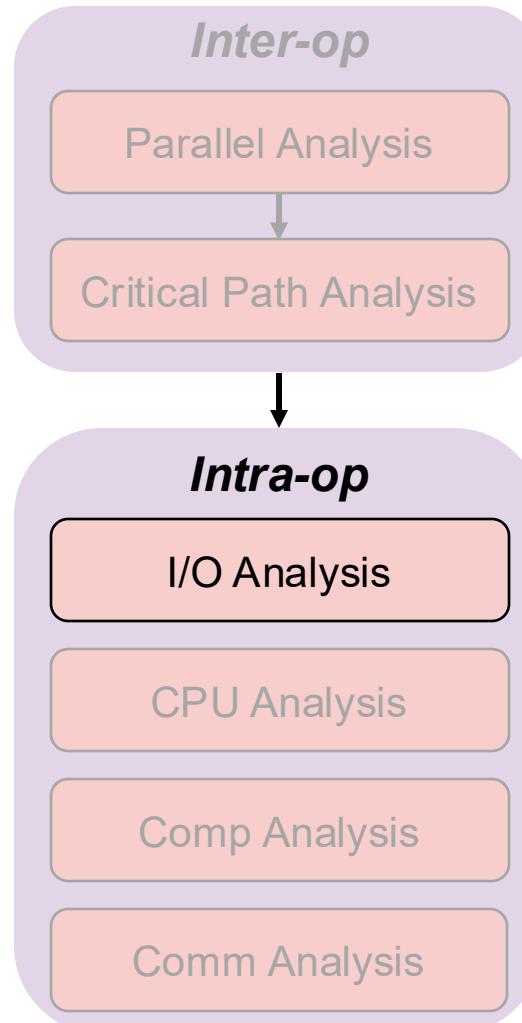
Inter-operator Analysis



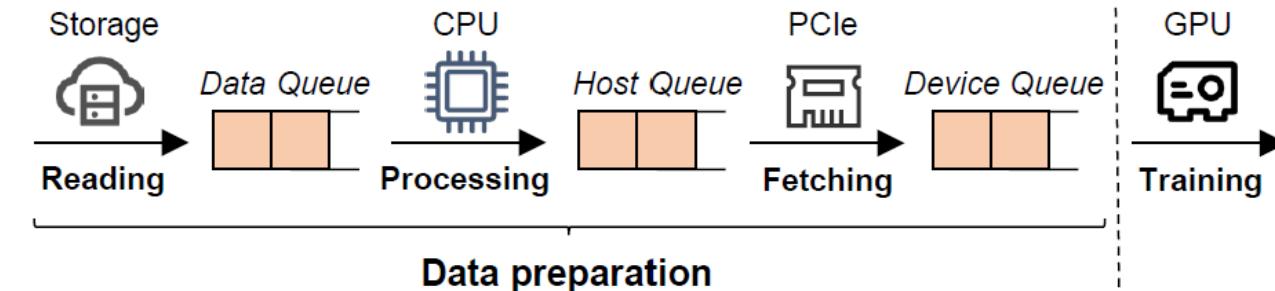
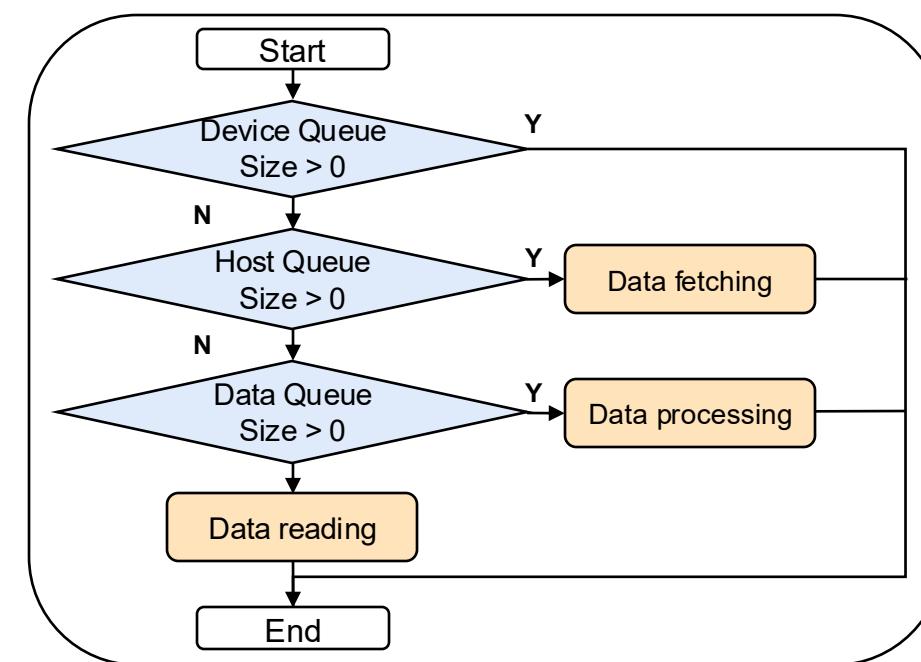
- Multi-component Parallel Analysis
 - Overlap, non-overlap computation/communication/host, free time.
- Critical Path Analysis
 - The bottleneck operators with most execution time on the critical path.



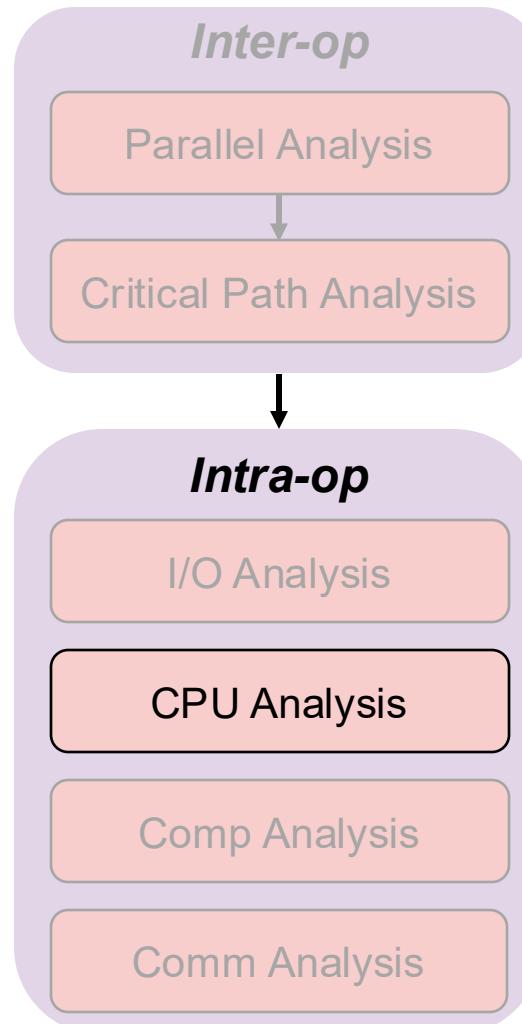
I/O Analysis



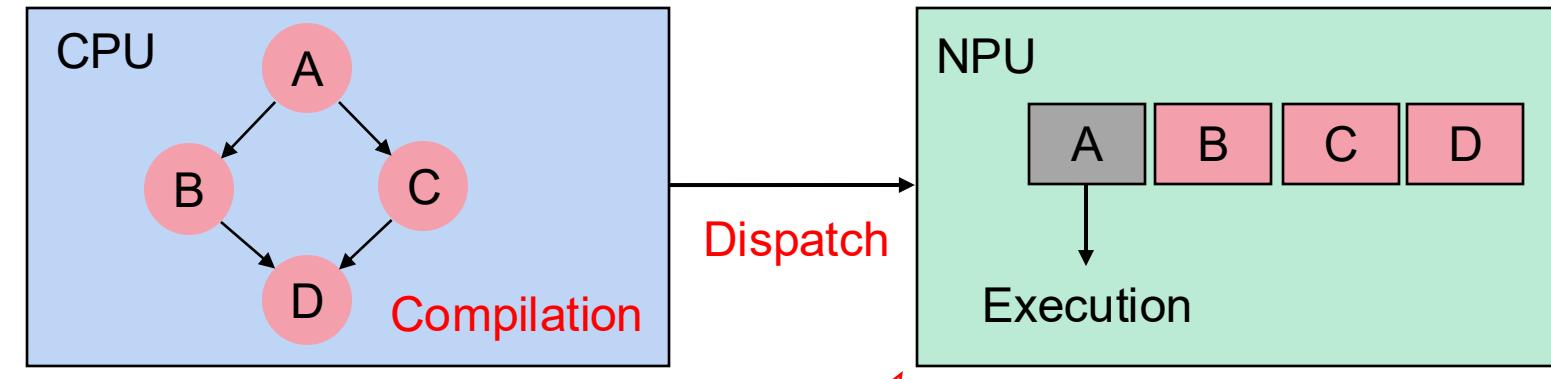
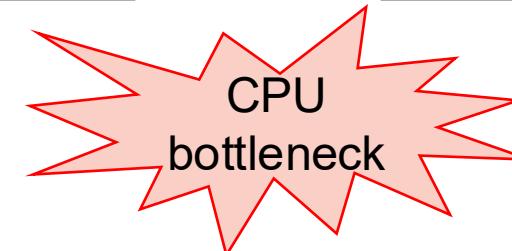
● Queue-based I/O Analysis



CPU Analysis



● CPU Bottleneck Causes



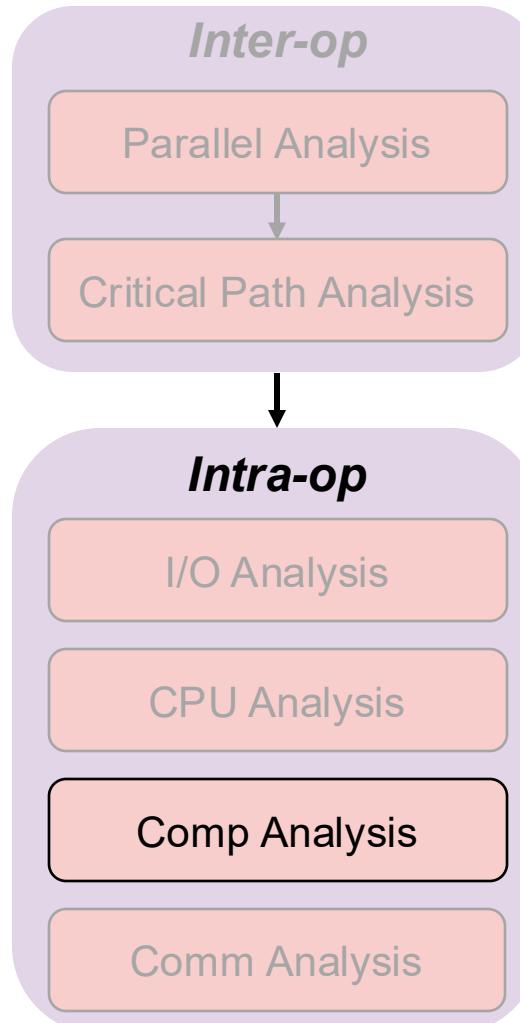
External interference

Garage collection

Performance monitor

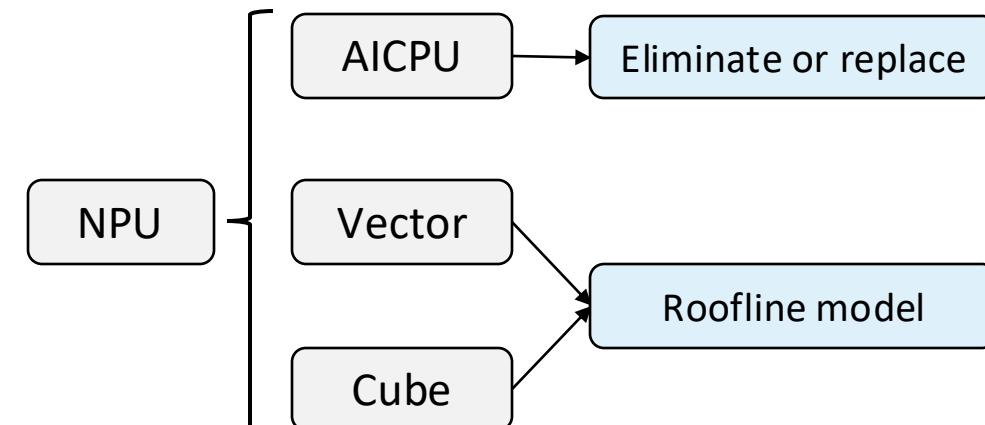
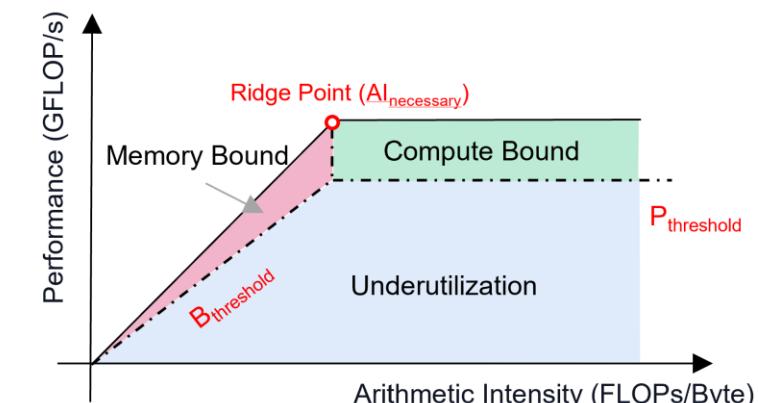
Environment configuration

Computation Analysis

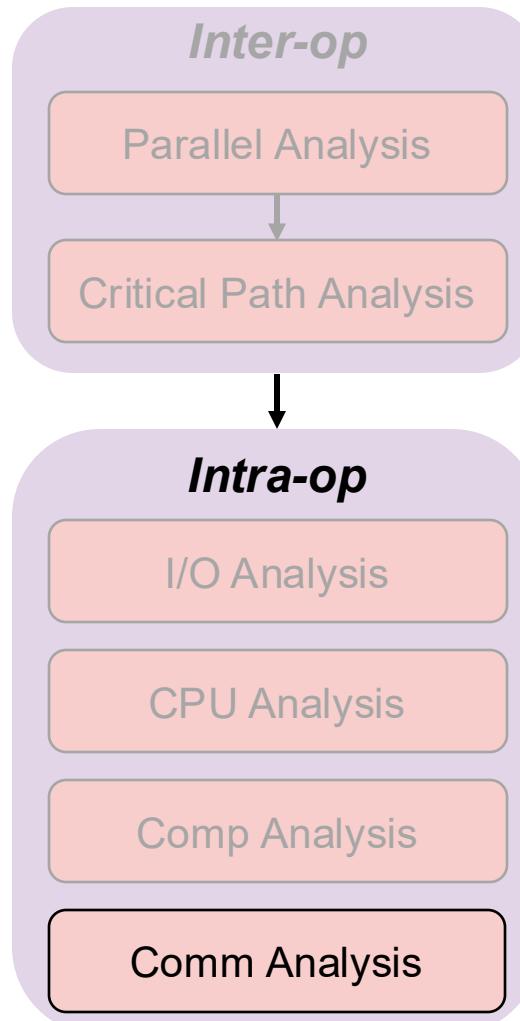


● Computation Bottleneck

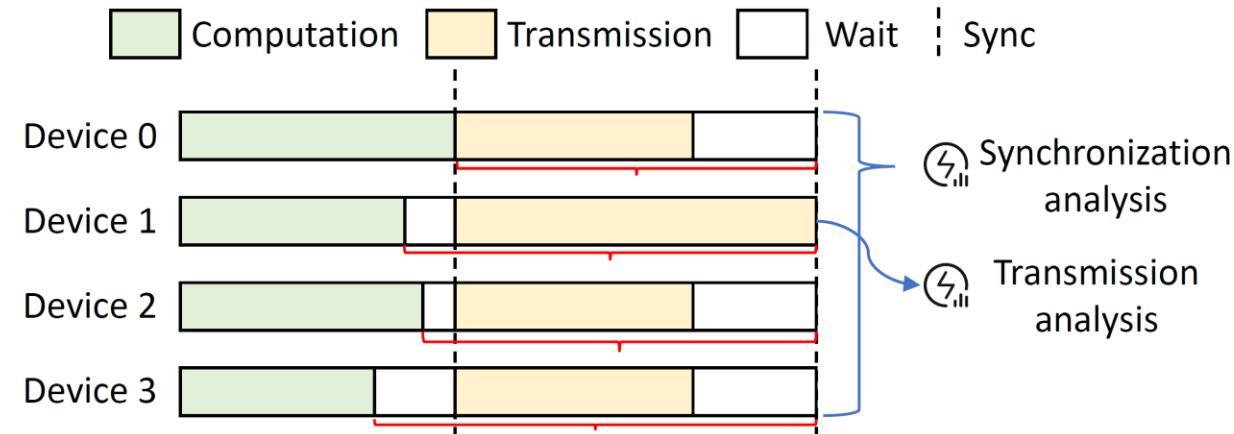
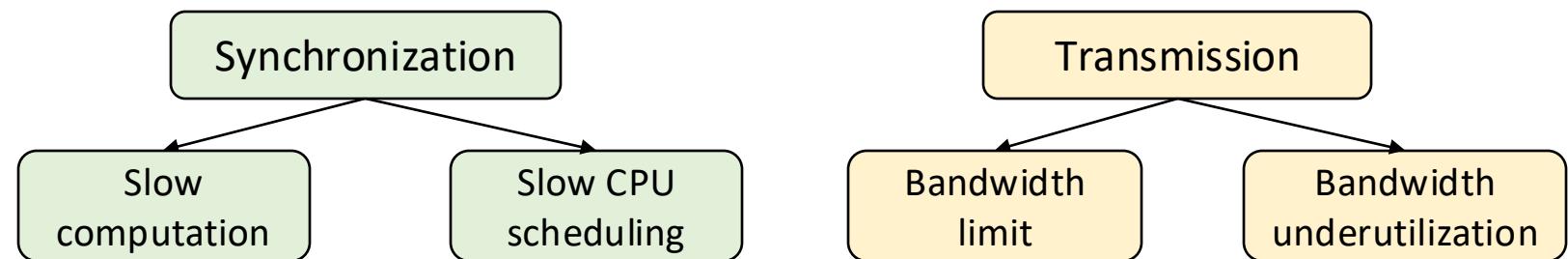
- Different compute units (AICPU, AICore Cube/Vector)
- Roofline model analysis (arithmetic, memory)



Communication Analysis

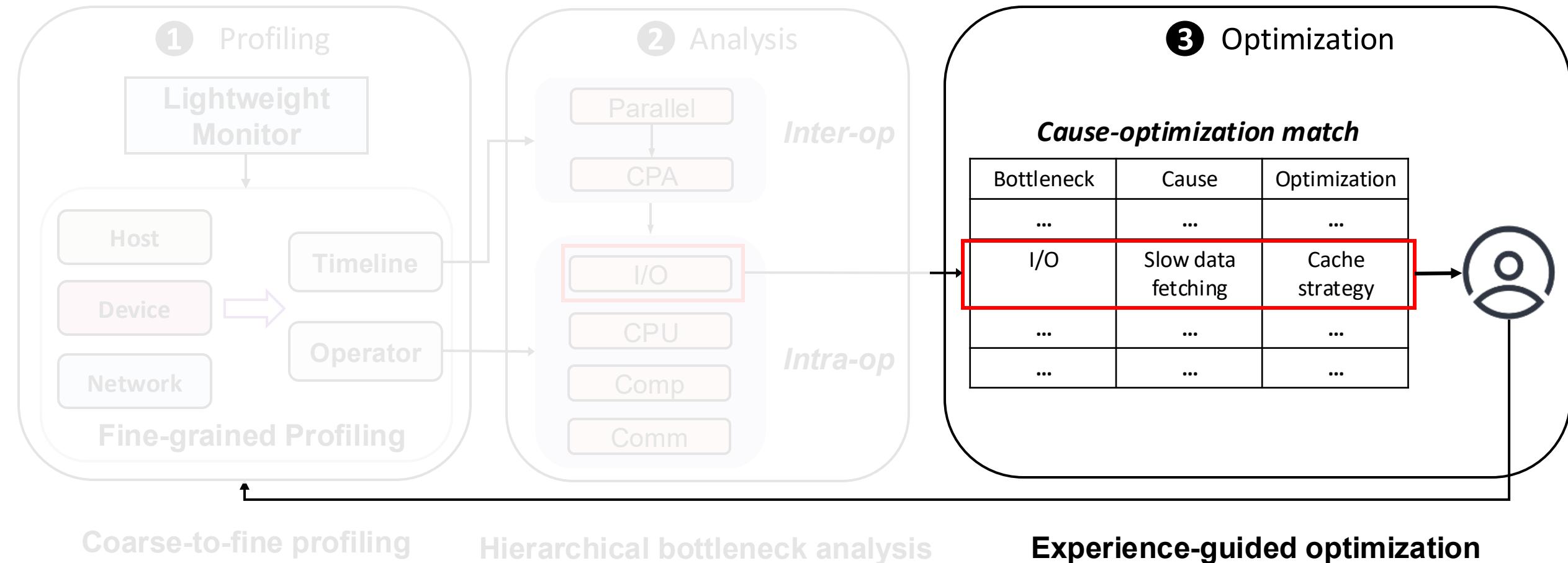


● Synchronization + Transmission



Detailed causes can be found in the paper.

Hermes System Design

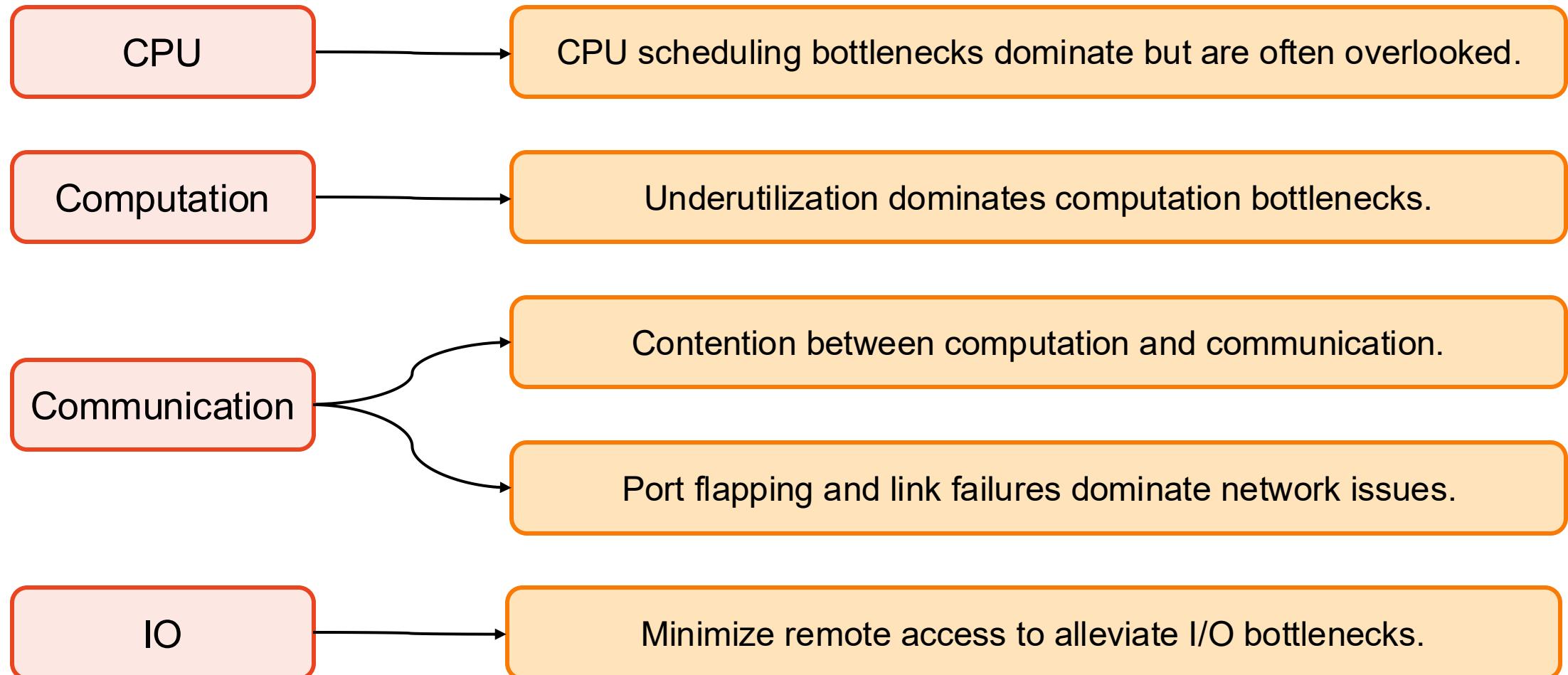


Bottleneck Cause-Optimization Match

Bottleneck	Cause	Optimization	Ratio
Parallel	Poor Parallelism	Auto hybrid parallel [67] / Multi-shard parallel	5.2%
I/O	Slow Data Reading	Increase I/O bandwidth / Remote to local storage	8.9%
	Slow Data Processing	Improve CPU parallelism (num_workers)	
		Avoid compression formats (zip, tar)	
	Slow Data Fetching	Cancel the taskset process binding [33]	
CPU	Operator Complication	Cache strategy (pin_memory, data prefetcher) [24, 66]	37.0%
	Operator Dispatch	Replace dynamic shape operators / Disable JIT compilation	
	Garbage Collection	Operator fusion [43, 68] / Eliminate synchronization operations	
	CPU Resources Contention	Disable gc / Increase gc threshold	
	Environment Configuration	Disable other CPU process	
Computation	Compute Bound	Align software versions / Reduce logging level	31.9%
	Memory Bound	Avoid decreasing computing frequency / Isolate slow nodes	
	Underutilization	Operator fusion [43, 68] / Quantization [38, 56, 63] / ZeRO [51, 52]	
		Eliminate AICPU operators	
		Replace operators with affinity APIs	
Communication	Bandwidth Contention	Forbid private format	17.0%
	RDMA Retransmission	Avoid bandwidth contention by re-scheduling operators	
	Small Packet	Adjust RDMA network configurations of switch and server	
	Byte Alignment	Increase batch size / Gradient fusion [26, 46] / Operator fusion	
	Network Configuration	Align HCCS data size	

CPU and computation bottlenecks dominate.

Lessons



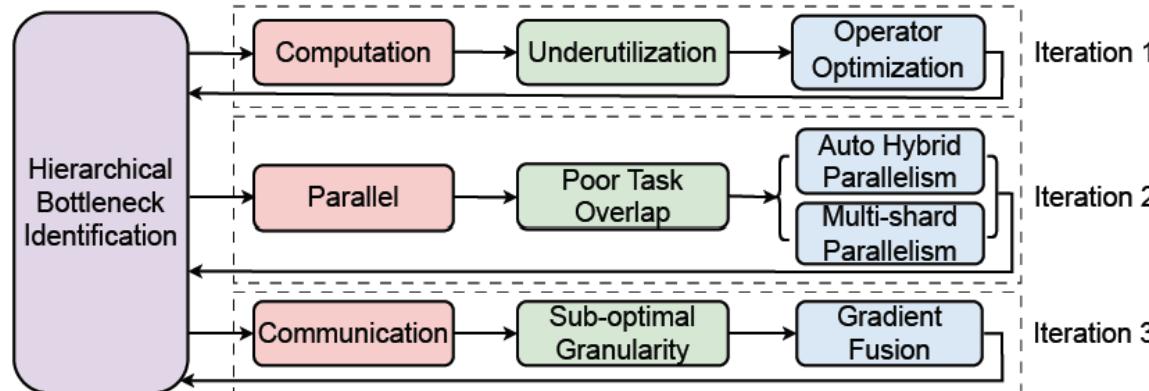
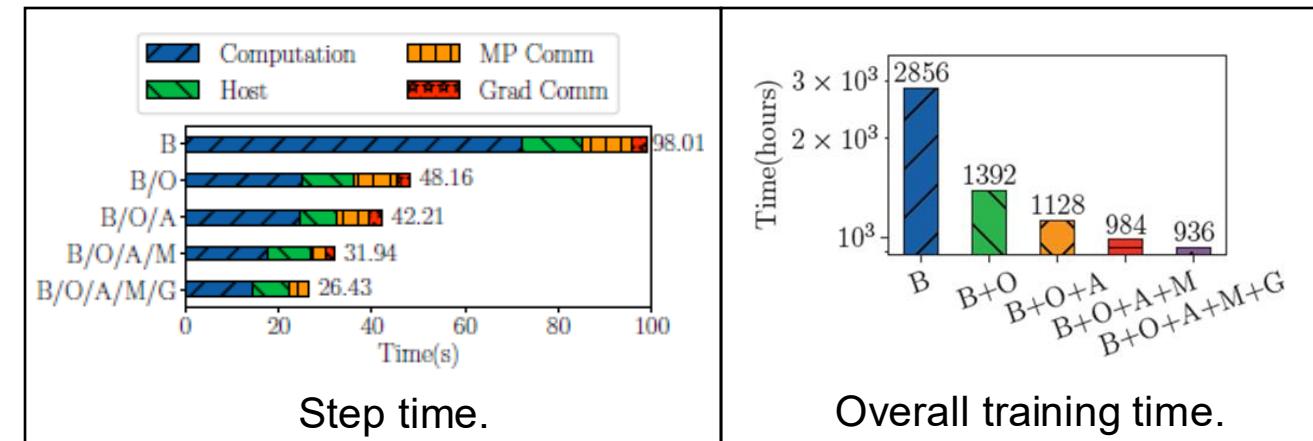
Outline

- Introduction
- Insights
- System Design
- Case Study
- Conclusion

Iterative Optimization Development for PanGu- α

Device: 128 Ascend 910A

Workloads: 100B PanGu- α model training



The optimization of large model training often requires multiple iterations.

After three iterations of optimization, the *total time* speedup is **3.05x**.

Deployment Optimization Experience

We summarize the speedups from optimization in different model deployments.

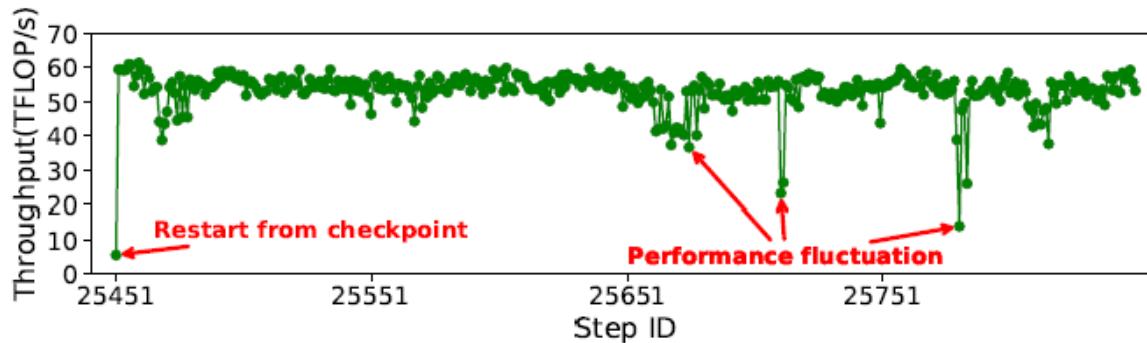
Type	Model	Parameter	Optimization Speedup (-: not optimizable)						# of NPUs	Dataset
			I/O	CPU	Para.	Compu.	Comm.	Total		
Vision	ResNet50	25.6M	5.03	-	-	1.02	1.04	5.34	8	ImageNet2012
	VGG16	138.4M	-	-	-	1.08	1.35	1.46		
	MobileNetV1-SSD	4.2M	-	1.37	-	-	-	1.37	1	
			1.08	1.91	-	-	-	2.07	8	VOC2012
NLP	Bert-Large	330M	-	-	-	1.63	1.38	2.49	8	Wiki
	PanGu- α	1.3B	-	-	-	1.18	1.02	1.20		
	GPT3-13B	13B	-	-	1.08	-	-	1.08		
Recommend	DeepFM	16.5M	-	-	-	-	1.08	1.08	8	Criteo
	DLRM	540M	-	-	-	-	1.17	1.17		

Our optimizations bring training speedups from **1.08-5.34 \times** in vision, NLP, and recommendation models.

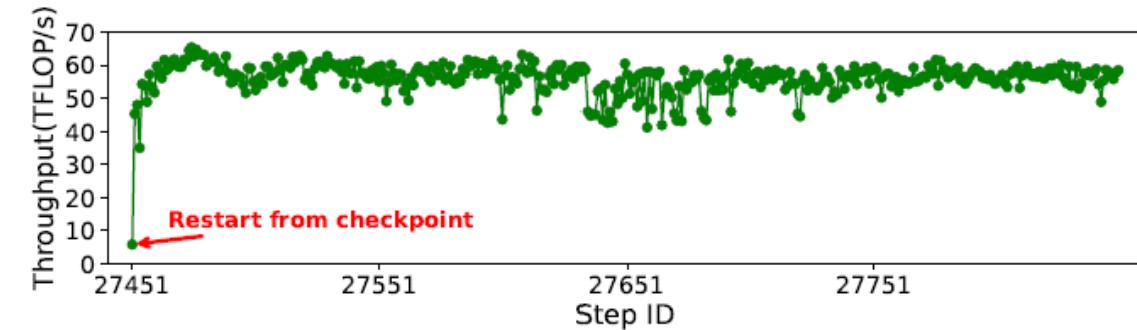
Detailed cases can be found in the paper.

Performance Fluctuation Optimization

9k-card MoE model training



(a) Performance before optimization.



(b) Performance after optimization.

(1) Increase Python garbage collection threshold.

(2) Active garbage collection when saving checkpoints.

Training time speedup is **1.06×**.

Average throughput speedup is **1.05×**.

Outline

- Introduction
- Insights
- System Design
- Case Study
- Conclusion

Conclusion

1. We propose Hermes, a systematic training optimization system with lightweight profiling, hierarchical analysis, and automated optimization guidance.
2. We summarize insights from 135 real-world cases and demonstrate Hermes's effectiveness through extensive case studies.

Future Work

1. Expand Hermes to support emerging model training technologies like reinforce learning.
2. Improve Hermes's ability to handle more complex bottlenecks and situations.
3. Integrate training logs and even LLM-based agents to more accurate bottleneck analysis.

Thanks

Q&A

wangzb@mail.nju.edu.cn

yuhangzhou@mail.nju.edu.cn

南京大學

