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Comparison of NPU and GPU
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Coarse-to-fine Profiling
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Inter-operator Analysis
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Computation Analysis
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Communication Analysis
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Detailed causes can be found in the paper.
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Bottleneck Cause-Optimization Match

Bottleneck Cause Optimization Ratio
Parallel Poor Parallelism Auto hybrid parallel [67] / Multi-shard parallel 5.2%
Slow Data Reading Increase IO bandwidth / Remote to local storage
Improve CPU parallelism (num_workers)
/O Slow Data Processing Avoid compression formats (zip, tar) 8.9%
Cancel the taskset process binding [33]
Slow Data Fetching Cache strategy (pin_memory, data prefetcher) [24,66]
Operator Complication Replace dynamic shape operators / Disable JIT compilation
Operator Dispatch Operator fusion [43,68] / Eliminate synchronization operations
CPU Garbage Collection Disable gc / Increase gc threshold 37.0%
CPU Resources Contention Disable other CPU process
Environment Configuration Align software versions / Reduce logging level
Compute Bound Avoid decreasing computing frequency / [solate slow nodes
Memory Bound Operator fusion [43,68] / Quantization [38,56,63] / ZeRO [51,52]
Computation Eliminate AICPU operators 31.9%
Underutilization Replace operators with affinity APIs )
Forbid private format
Bandwidth Contention Avoid bandwidth contention by re-scheduling operators
RDMA Retransmission Adjust RDMA network configurations of switch and server
Communication Small Packet Increase batch size / Gradient fusion [26,46] / Operator fusion 17.0%

Byte Alignment

Align HCCS data size

Network Configuration

HCCL environment variables / Switch congestion control / UDP hashing collision

-

CPU and
computation
bottlenecks

dominate.




Lessons

CPU —  CPU scheduling bottlenecks dominate but are often overlooked.
Computation > Underutilization dominates computation bottlenecks.
. Contention between computation and communication. ]
[Communication
Port flapping and link failures dominate network issues. ]
[ 1O ] ﬁ{ Minimize remote access to alleviate 1/0O bottlenecks. ]
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Iterative Optimization Development for PanGu-a

Device: 128 Ascend 910A
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The optimization of large model training often requires multiple iterations.

After three iterations of optimization, the total time speedup is 3.05x.




Deployment Optimization Experience

We summarize the speedups from optimization in different model deployments.

Optimization Speedup (-: not optimizable)

Type Model Parameter 70 | CPU | Para. | Compu. | Comm. | Total # of NPUs Dataset
ResNet50 25.6M 5.03 - - 1.02 1.04 5.34
» VGGI6 1384M | - 5 i [.08 135 | 1.46 8 [mageNet2012
Vision 137 | - i i .37 I
MobileNetV 1-SSD 4.2M 03 T 191 - - - 307 g VOC2012
Bert-Large 330M - - - 1.63 1.38 2.49
NLP PanGu-« 1.3B - - - 1.18 1.02 1.20 8 Wiki
GPT3-13B 13B - - 1.08 - - 1.08
DeepFM 16.5M - - - - 1.08 1.08 .
Recommend DIRM SI0M - - - - 17 77 8 Criteo

{Our optimizations bring training speedups from 1.08-5.34x in vision, NLP, and recommendation models.]

Detailed cases can be found in the paper.



Performance Fluctuation Optimization

9k-card MoE model training
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(a) Performance before optimization. (b) Performance after optimization.

(1) Increase Python garbage collection threshold. Training time speedup is 1.06x.

(2) Active garbage collection when saving checkpoints. Average throughput speedup is 1.05x.
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Conclusion

1. We propose Hermes, a systematic training optimization system with lightweight profiling,
hierarchical analysis, and automated optimization guidance.

2. We summarize insights from 135 real-world cases and demonstrate Hermes’s effectiveness
through extensive case studies.

Future Work

1. Expand Hermes to support emerging model training technologies like reinforce learning.
2. Improve Hermes’s ability to handle more complex bottlenecks and situations.

3. Integrate training logs and even LLM-based agents to more accurate bottleneck analysis.
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