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Background

Large-scale network sensing
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Motivation and Challenge

Blocking: :
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Motivation and Challenge
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Motivation and Challenge
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16 cores per die Pkt, , ~ Pkt . PKt, ~ Pk,

8 dies

(AMD EPYC 9004 series processors) _ _
Leveraging parallelism

Modern CPUs have more than 100 cores




Sans: Streaming Anonymized Network Sensing

Dynamic, efficient, and Incremental analysis
compressed data structure algorithm
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Dynamic, efficient, and
compressed data structure
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Data structure

| PO ...  IP3 .. IPx
(IPO, IP1)(IP3, IP1)(IP3,IP2) ...  (IPx, IPy) ;
1 3 4 2 | / \
|
. |
(a) Edge list ' IP0 IP1 P2 .. PO ... IPy
I 1 2
| v
(Ipo, 1P1) ...  (IP3,IP1)(IP3,1P2) ... (IPx, IPy) : PO IP1 1IP2
1 3 4 2 | 3 4 .
|
; (d) HashTable of HashTable
(b) HashTable for edge |
: PO .. IP3 ..  IPx
|
Values 1 3 4 2 :
Column Indices 1 1 2 y : J
Row offset 0 1 v4 : | IP1 : : IP1 : || 1Py :
) ! 1 | 3 | 2 |
(z=# of values in row 0 ~ x-1) ; = : | =
v 1
| |
(c) CSR | | 1P2 f
I 4 |
| | L
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(e) HashTable of list




Data structure

Direct

Edge list Static O(|E) O(|E) Bounded
: Not support
I HT for edge Dynamic O(1) O(1) Bounded I neighbor access
CSR Static O(|E) O(|E) Bounded
Hierarchical HT of HT Dynamic O(1) O(1) Unbounded
: : Support
| HT oflist ~ Dynamic  O(d(v)) O(d(v)) Bounded | neighbor access
(IPO, IP1) (IP3, IP1)(IP3, IP2) (IPx, IPy)

Combining HT for edge and HT of list:

Add/Remove: O(1)
Support Accessing Neighbors
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Incremental analysis
algorithm
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Incremental analysis algorithm

Packet stream
Zipf-Mandelbrot distribution:

P(d) = 1/ 1 \”
- Z\d+6
Minimize:
Hypersparse update 1 m
_ 2
matrices MSE = - z (P(d) —yq)
d=1

Gradient descent:
d
Incremental / o a_ P(d)
a

Analysis o
—y—P
0 —0—y-gP(d)

0
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al,Ql,Zl az,ez,ZZ
(y 1s a preset parameter)
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Leveraging Parallelism
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Use multithreading and pipeline to accelerate computing:
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Experimental Evaluation

* Hardware
* Intel Xeon Gold 6330 CPU (56 cores, 2.0GHz)

* 512GB memory

* Comparator
* CSR: GraphBLAS

* Dataset
* Provided by GraphChallenge
» Consists 2°° synthetic packets with random data
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Experiment 1: Sans V.S. SOTA

Packet stream

lst

: d I
window 2" stride

window

Sans outperforms

* HToflistby 1.1X%

e HTof HT by 1.6 %
 CSR by a million times

B HT of HT B HT of list
I Sans B CSR (GraphBLAS)

3.7 Years 249 Hours

7501

Time (s)

1 128 9)
Stride
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Experiment 2: Scalability

2001 7.8 % speedup from 1 to 32 threads

1 2 4 8 16 32
Number of threads
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Experiment 3: Varying Stride

600 —e— 1 thread
4 threads : : :
16 threads Our. incremental analysis al.gorlthm
=4000 0 e avoids redundant computation:
i 200- Only 5% faster when stride=1024
compared with stride=1
0

1 4 16 64 256 1024
Stride
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Conclusion

* Propose Sans, streaming anonymized network sensing system
* Dynamic, efficient, and compressed data structure
 Incremental calibration algorithm
* Parallelization

* Outperforms all SOTA and has good scalability
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